Advertisement

Crossed products over graded local rings

  • S. Caenepeel
  • F. Van Oystaeyen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 917)

Keywords

Local Ring Commutative Ring Degree Zero Galois Extension Homogeneous Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Auslander, B. Goldman, The Brauer Group of a Commutative Ring Trans. Am. Math. Soc. 97 (1960), 367–407.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    F. Demeyer, E. Ingraham, Separable Algebras over Commutative Rings Lect. Notes in Math. 181, Springer Verlag 1970.Google Scholar
  3. 3.
    J. Kelley, General Topology, Van Nostrand, New York, 1955.zbMATHGoogle Scholar
  4. 4.
    M.A. Knus, M. Ojanguren, Théorie de la descente et Algèbres d'Azumaya Lect. Notes in Math., 389, Springer Verlag, Berlin, 1974.zbMATHGoogle Scholar
  5. 5.
    M. Nagata, Local Rings, Interscience Tracts in pure and applied Math. 13 John Wiley and sons, New York, 1962.zbMATHGoogle Scholar
  6. 6.
    C. Nąstącescu, F. Van Oystaeyen, Graded and Filtered Rings and Modules Lect. Notes in Mathematics 758, Springer Verlag, Berlin, 1974.Google Scholar
  7. 7.
    M. Orzech, C. Small, The Brauer Group of Commutative Rings, Lect. Notes vol. 11, Marcel Dekker, New York, 1975.zbMATHGoogle Scholar
  8. 8.
    F. Van Oystaeyen, Graded Azumaya Algebras and Brauer Groups, Proceedings Ring Theory UIA 1980, Lect. Notes in Math. 825, Springer Verlag, Berlin 1980.Google Scholar
  9. 9.
    F. Van Oystaeyen, A note on graded P. I. Rings, Bulletin de la Société Mathématique de Belgique, 32, 32 (1980) 22–28.MathSciNetGoogle Scholar
  10. 10.
    F. Van Oystaeyen, On Brauer Groups of Arithmetically Graded Rings, Comm. in Algebra, to appear.Google Scholar
  11. 11.
    F. Van Oystaeyen, Crossed products over Arithmetically Graded Rings, To appear.Google Scholar
  12. 12.
    F. Van Oystaeyen, A. Verschoren, Geometric Interpretation of Brauer Groups of graded rings I, to appear.Google Scholar
  13. 13.
    F. Van Oystaeyen, A. Verschoren, Geometric Interpretation of Brauer Groups II, to appear.Google Scholar
  14. 14.
    A.C.M. Van Rooy, Non-Archimedan Functional Analysis, Marcel Dekker, New York, 1978.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • S. Caenepeel
    • 1
  • F. Van Oystaeyen
    • 2
  1. 1.V.U.B.Free University of BrusselsBelgium
  2. 2.U.I.A.University of AntwerpBelgium

Personalised recommendations