Skip to main content

Holomorphic gauge theory

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 775))

Abstract

A new invariant way of obtaining interactions from gauge freedom is explored. No use is made of Lagrangians. Instead, the starting point is a scalar quantity of immediate physical interest: the probability density ρ of the particle in phase space, as defined in references [3–6]. This theory is based not on space-time R4 but on the forward tube T, which is interpreted as an extended classical phase space. The probability density ρ is a positive function on T which can be expressed as the fiberwise inner product 〈f, f〉 of the wave function f with itself. Here f is a holomorphic section of the trivial holomorphic vector bundle T × CS, and the inner product is with respect to a fiber metric h: 〈f, f〉 = f*hf. Conservation of probability, combined with holomorphy, leads to an equation for f which is closely related to the Klein-Gordon equation for a particle minimally coupled to a Yang-Mills field. The Yang-Mills potential is uniquely determined as the canonical connection of type (1,0) defined by h.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. F. Streater and A. S. Wightman, PCT, Spin and Statistics and All That, (Benjamin, New York, 1964).

    MATH  Google Scholar 

  2. E. Nelson, in Constructive Quantum Field Theory, G. Velo and A. S. Wightman, editors (Springer, 1973); K. Osterwalder and R. Schrader, Phys. Rev. Letters 29, 1423 (1972).

    Google Scholar 

  3. G. Kaiser, Thesis, University of Toronto, 1977.

    Google Scholar 

  4. G. Kaiser, J. Math. Phys., 18, 952 (1977).

    Article  ADS  Google Scholar 

  5. G. Kaiser, J. Math. Phys., 19, 502 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  6. G. Kaiser, Lett. Math. Phys. 3, 61 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Meschkowski, Hilbertsche Räume mit Kernfunktion, (Springer, 1962).

    Google Scholar 

  8. T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949).

    Article  ADS  Google Scholar 

  9. R. Abraham and J. E. Marsden, Foundations of Mechanics — second edition (Benjamin/Cummings, 1978).

    Google Scholar 

  10. E. S. Abers and B. W. Lee, Gauge Theories, Physics Reports 9, no. 1 (1973).

    Google Scholar 

  11. W. Drechsler and M. E. Mayer, Fiber Bundle Techniques in Gauge Theories, (Springer, 1977).

    Google Scholar 

  12. R. O. Wells, Differential Analysis on Complex Manifolds, (Prentice Hall, 1973).

    Google Scholar 

  13. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vols. I and II (Interscience, 1963 and 1969).

    Google Scholar 

  14. Invariant Wave Equations, G. Velo and A. S. Wightman, editors (Springer, 1978).

    Google Scholar 

  15. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, 1964); Relativistic Quantum Fields (McGraw-Hill, 1965).

    Google Scholar 

  16. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, 1962).

    Google Scholar 

  17. F. Guerra, L. Rosen and B. Simon, Annuals of Math. 101, 111 (1975).

    Article  MathSciNet  Google Scholar 

  18. D. Ter Haar and H. Wergeland, Thermodynamics and Statistical Mechanics in the Special Theory of Relativity, Physics Reports 1, no. 2 (1970).

    Google Scholar 

Download references

Authors

Editor information

Gerald Kaiser Jerrold E. Marsden

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag

About this paper

Cite this paper

Kaiser, G. (1980). Holomorphic gauge theory. In: Kaiser, G., Marsden, J.E. (eds) Geometric Methods in Mathematical Physics. Lecture Notes in Mathematics, vol 775. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0092024

Download citation

  • DOI: https://doi.org/10.1007/BFb0092024

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09742-6

  • Online ISBN: 978-3-540-38571-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics