Skip to main content

Deques, trees and lattice paths

  • Contributed Papers
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 884))

Abstract

A double ended queue or deque is a linear list for which all insertions and deletions occur at the ends of the list. We give a direct, ‘pictorial’ proof of a result of Knuth on the enumeration of permutations obtainable from output restricted deques. This approach readily identifies the numbers of these permutations as Schröder numbers and leads naturally to correspondences with other equinumerous sets of trees and lattice paths. We also gather together other references to occurrences of the Schröder numbers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Comtet, Advanced Combinatorics, (D. Reidel, Dordrecht, 1974), esp. pp. 56–57, 80–81.

    Book  Google Scholar 

  2. R. Donaghey and L.W. Shapiro, “Motzkin Numbers”, J. Combinatorial Theory, Ser. A, 23 (1977), 291–301.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Erdélyi and I.M.H. Etherington, “Some problems of non-associative combinations, I, II”, Edinburgh Math. Notes, 32 (1940), 1–12, esp. p.6.

    Article  MATH  Google Scholar 

  4. I.M. Gessel, “A factorization for formal Laurent series and lattice path enumeration”, J. Combinatorial Theory, Ser. A, 28 (1980), 321–337, esp. p. 329.

    Article  MathSciNet  Google Scholar 

  5. H.W. Gould, Research Bibliography of Two Special Number Sequences, rev. ed., (Combinatonial Research Institute, Morgantown, W. Va., 1977).

    MATH  Google Scholar 

  6. D.E. Knuth, The Art of Computer Programming, Vol. 1; Fundamental Algorithms, 2nd ed., (Addison Wesley, Reading, Ma., 1973), esp. pp. 235–239, 398, 533–534, 589.

    Google Scholar 

  7. G. Kreweras, “Sur les partitions non croissées d'un cycle”, Discrete Math., 1(1972), 333–350, esp. p. 345.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.S. Lew, “Polynomial enumeration of multidimensional lattices”, Math. Systems Theory, 12(1979), 253–270.

    Article  MathSciNet  MATH  Google Scholar 

  9. S.G. Mohanty, Lattice Path Counting and Applications, (Academic Press, New York, 1979).

    MATH  Google Scholar 

  10. L. Moser and W. Zayachkowski, “Lattice paths with diagonal steps”, Scripta Math., 26(1963), 223–229, esp. pp. 227, 228.

    MathSciNet  MATH  Google Scholar 

  11. Th. Motzkin, “Relations between hypersurface crossratios and a combinatorial formula for partitions of a polygon, for permanent preponderance and for nonassociative products”, Bull. Amer. Math. Soc., 54(1948), 352–360, esp. p. 359.

    Article  MathSciNet  MATH  Google Scholar 

  12. R.C. Mullin and R.G. Stanton, “A map theoretic approach to Davenport-Schinzel sequences”, Pacific J. Math., 40(1972), 167–172.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Riordan, Combinatorial Identities, (Wiley, New York, 1968), esp. pp. 149, 151, 168.

    MATH  Google Scholar 

  14. J. Riordan, “Enumeration of plane trees by branches and endpoints”, J. Combinatorial Theory, Ser. A, 19(1975), 214–222.

    Article  MathSciNet  MATH  Google Scholar 

  15. D.G. Rogers, “The enumeration of a family of ladder graphs I: Connective relations”, Quart. J. Math. (Oxford) (2), 28(1977), 421–431.

    Article  MathSciNet  MATH  Google Scholar 

  16. D.G. Rogers, “The enumeration of a family of ladder graphs II: Schröder and Super connective relations”, Quart. J. Math. (Oxford) (2), 31 (1980).

    Google Scholar 

    Google Scholar 

  17. D.G. Rogers, “A Schröder triangle: three combinatorial problems”, in Combinatorial Mathematics V.: Proceedings of the Fifth Australian Conference. Lecture Notes in Mathematics, Vol. 622, (Springer-Verlag, Berlin, 1977), pp. 175–196.

    Chapter  Google Scholar 

  18. D.G. Rogers, “Pascal's triangle, Catalan numbers and renewal arrays”, Discrete Math., 22(1978), 301–311.

    Article  MathSciNet  MATH  Google Scholar 

  19. D.G. Rogers, “Eplett's identity for renewal arrays”, Discrete Math., to appear.

    Google Scholar 

  20. D.G. Rogers and L.W. Shapiro, “Some correspondences involving the Schröder number”, in Combinatorial Mathematics: Proceedings of International Conference, Canberra, 1977, Lecture Notes in Mathematics, Vol. 686, (Springer-Verlag, Berlin, 1978), pp. 267–276.

    Chapter  Google Scholar 

  21. E. Schröder, “Vier Kombinatorische Problems”, Z. Math. Phys., 15 (1870), 361–376.

    Google Scholar 

  22. N.J.A. Sloane, A Handbook of Interger Sequences, (Academic Press, New York, 1973).

    MATH  Google Scholar 

  23. R.P. Stanley, “Generating functions” in MAA Studies in Combinatorics (Math. Assoc. Amer., Washington, D.C., 1978), pp. 100–141, esp. pp. 126, 129.

    Google Scholar 

  24. R.G. Stanton and D.D. Cowan, “Note on a “square” functional equation”, SIAM Review, 12(1970), 277–279.

    Article  MathSciNet  MATH  Google Scholar 

  25. H.N.V. Temperley and D.G. Rogers, “A note on Baxter's generalization of the Temperley-Lieb operators”, in Combinatorial Mathematics: Proceedings of International Conference, Canberra, 1977. Lecture Notes in Mathematics, Vol. 686,(Springer-Verlag, Berlin, 1978), pp. 240–247.

    Chapter  Google Scholar 

  26. J.H. van Lint, Combinatorial Theory Seminar, Eindhoven University of Technology. Lecture Notes in Mathematics, Vol. 382, (Springer-Verlag, Berlin, 1974), esp. pp. 21–27.

    Book  MATH  Google Scholar 

  27. E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, 4th ed., (Cambridge University Press, 1946).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kevin L. McAvaney

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Rogers, D.G., Shapiro, L.W. (1981). Deques, trees and lattice paths. In: McAvaney, K.L. (eds) Combinatorial Mathematics VIII. Lecture Notes in Mathematics, vol 884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0091826

Download citation

  • DOI: https://doi.org/10.1007/BFb0091826

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10883-2

  • Online ISBN: 978-3-540-38792-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics