The number field sieve

  • A. K. Lenstra
  • H. W. LenstraJr.
  • M. S. Manasse
  • J. M. Pollard
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1554)


The number field sieve is an algorithm to factor integers of the form res for small positive r and |s|. The algorithm depends on arithmetic in an algebraic number field. We describe the algorithm, discuss several aspects of its implementation, and present some of the factorizations obtained. A heuristic run time analysis indicates that the number field sieve is asymptotically substantially faster than any other known factoring method, for the integers that it applies to. The number field sieve can be modified to handle arbitrary integers. This variant is slower, but asymptotically it is still expected to beat all older factoring methods.


Prime Number Prime Ideal Number Field Discrete Logarithm Partial Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.M. Adleman, Factoring numbers using singular integers, Proc. 23rd Annual ACM Symp. on Theory of Computing (STOC), New Orleans, May 6–8, 1991, 64–71.Google Scholar
  2. 2.
    D. J. Bernstein, A. K. Lenstra, A general number field sieve implementation, this volume, pp. 103–126.Google Scholar
  3. 3.
    J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, S. S. Wagstaff, Jr., Factorizations of b n ± 1, b=2, 3, 5, 6, 7, 10, 11, 12 up to high powers, second edition, Contemp. Math. 22, Amer. Math. Soc., Providence, 1988.zbMATHGoogle Scholar
  4. 4.
    J. Buchmann, Complexity of algorithms in algebraic number theory, in: R. A. Mollin (ed.), Proceedings of the first conference of the Canadian Number Theory Association, De Gruyter, Berlin, 1990, 37–53.Google Scholar
  5. 5.
    J. Buchmann, H. W. Lenstra, Jr., Approximating rings of integers in number fields, in preparation.Google Scholar
  6. 6.
    J. Buchmann, V. Shoup, Constructing nonresidues in finite fields and the extended Riemann hypothesis, in preparation. Extended abstract: Proc. 23rd Annual ACM Symp. on Theory of Computing (STOC), New Orleans, May 6–8, 1991, 72–79.Google Scholar
  7. 7.
    J. P. Buhler, H. W. Lenstra, Jr., C. Pomerance, Factoring integers with the number field sieve, this volume, pp. 50–94.Google Scholar
  8. 8.
    H. Cohen, A course in computational algebraic number theory, Springer-Verlag, to appear.Google Scholar
  9. 9.
    H. Cohen, H. W. Lenstra, Jr., Heuristics on class groups, pp. 33–62 in: H. Jager (ed.), Number theory, Noordwijkerhout 1983, Lecture Notes in Math. 1068, Springer-Verlag, Heidelberg.Google Scholar
  10. 10.
    D. Coppersmith, Fast evaluations of logarithms in fields of characteristic 2, IEEE Trans. Inform. Theory 30 (1984), 587–594.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    D. Coppersmith, Modifications to the number field sieve, J. Cryptology, to appear; IBM Research Report RC 16264, 1990.Google Scholar
  12. 12.
    D. Coppersmith, Solving linear equations over GF(2): block Lanczos algorithm, Linear Algebra Appl., to appear; IBM Research Report RC 16997, 1991.Google Scholar
  13. 13.
    D. Coppersmith, Solving linear equations over GF(2) II: block Wiedemann algorithm, Math. Comp., to appear; IBM Research Report RC 17293, 1991.Google Scholar
  14. 14.
    D. Coppersmith, A. M. Odlyzko, R. Schroeppel, Discrete logarithms in GF(p), Algorithmica 1 (1986), 1–15.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    J.-M. Couveignes, Computing a square root for the number field sieve, this volume, pp. 95–102.Google Scholar
  16. 16.
    J. D. Dixon, Asymptotically fast factorization of integers, Math. Comp. 36 (1981), 255–260.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    T. ElGamal, A subexponential-time algorithm for computing discrete logarithms over GF(p 2), IEEE Trans. Inform. Theory 31 (1985), 473–481.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    D. M. Gordon, Discrete logarithms in GF(p) using the number field sieve, SIAM J. Discrete Math. 6 (1993), 124–138.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    D. M. Gordon, K. S. McCurley, Massively parallel computation of discrete logarithms, Advances in cryptology, Crypto '92, to appear.Google Scholar
  20. 20.
    J. L. Hafner, K. S. McCurley, Asymptotically fast triangularization of matrices over rings, SIAM J. Comput. 20 (1991), 1068–1083.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    D. E. Knuth, The art of computer programming, volume 2, Seminumerical algorithms, second edition, Addison-Wesley, Reading, Massachusetts, 1981.zbMATHGoogle Scholar
  22. 22.
    B. A. LaMacchia, A. M. Odlyzko, Solving large sparse systems over finite fields, Advances in cryptology, Crypto '90, Lecture Notes in Comput. Sci. 537 (1991), 99–129.zbMATHGoogle Scholar
  23. 23.
    B. A. LaMacchia, A. M. Odlyzko, Computation of discrete logarithms in prime fields, Designs, Codes and Cryptography 1 (1991), 47–62.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    S. Lang, Algebra, third edition, Addison-Wesley, Reading, Massachusetts, 1993.zbMATHGoogle Scholar
  25. 25.
    A. K. Lenstra, H. W. Lenstra, Jr., Algorithms in number theory, Chapter 12 in: J. van Leeuwen (ed.), Handbook of theoretical computer science, Volume A, Algorithms and complexity, Elsevier, Amsterdam, 1990.Google Scholar
  26. 26.
    A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, J. M. Pollard, The factorization of the ninth Fermat number, Math. Comp. 61 (1993), to appear.Google Scholar
  27. 27.
    A. K. Lenstra, M. S. Manasse, Factoring by electronic mail, Advances in cryptology, Eurocrypt '89, Lecture Notes in Comput. Sci. 434 (1990), 355–371.MathSciNetCrossRefGoogle Scholar
  28. 28.
    A. K. Lenstra, M. S. Manasse, Factoring with two large primes, Math. Comp., to appear.Google Scholar
  29. 29.
    H. W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. 126 (1987), 649–673.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    H. W. Lenstra, Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. 26 (1992), 211–244.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    H. W. Lenstra, Jr., C. Pomerance, A rigorous time bound for factoring integers, J. Amer. Math. Soc. 5 (1992), 483–516.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    M. A. Morrison, J. Brillhart, A method of factoring and the factorization of F 7, Math. Comp. 29 (1975), 183–205.MathSciNetzbMATHGoogle Scholar
  33. 33.
    M. Pohst, H. Zassenhaus, Algorithmic algebraic number theory, Cambridge University Press, Cambridge, 1989.CrossRefzbMATHGoogle Scholar
  34. 34.
    C. Pomerance, Analysis and comparison of some integer factoring algorithms, pp. 89–139 in: H. W. Lenstra, Jr., R. Tijdeman (eds), Computational methods in number theory, Math. Centre Tracts 154/155, Mathematisch Centrum, Amsterdam, 1983.Google Scholar
  35. 35.
    C. Pomerance, Fast, rigorous factorization and discrete logarithm algorithms, in: D. S. Johnson, T. Nishizeki, A. Nozaki, H. S. Wilf (eds), Discrete algorithms and complexity, Academic Press, Orlando, 1987, 119–143.Google Scholar
  36. 36.
    C. Pomerance (ed.), Cryptology and computational number theory, Proc. Sympos. Appl. Math. 42, Amer. Math. Soc., Providence, 1990.zbMATHGoogle Scholar
  37. 37.
    C. Pomerance, J. W. Smith, Reduction of huge, sparse matrices over finite fields via created catastrophes, Experiment. Math. 1 (1992), 89–94.MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    C. P. Schnorr, Refined analysis and improvements on some factoring algorithms, J. Algorithms 3 (1982), 101–127.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    O. Schirokauer, On pro-finite groups and on discrete logarithms, Ph.D. thesis, University of California, Berkeley, 68 pages, May 1992.Google Scholar
  40. 40.
    I. N. Stewart, D. O. Tall, Algebraic number theory, second edition, Chapman and Hall, London, 1987.zbMATHGoogle Scholar
  41. 41.
    B. Vallée, Generation of elements with small modular squares and provably fast integer factoring algorithms, Math. Comp. 56 (1991), 823–849.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    D. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans. Inform. Theory 32 (1986), 54–62.MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    H. G. Zimmer, Computational problems, methods and results in algebraic number theory, Lecture Notes in Math. 262, Springer-Verlag, Berlin, 1972.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • A. K. Lenstra
    • 1
  • H. W. LenstraJr.
    • 2
  • M. S. Manasse
    • 3
  • J. M. Pollard
    • 4
  1. 1.MorristownUSA
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  3. 3.DEC SRCPalo AltoUSA
  4. 4.Tidmarsh CottageReadingEngland

Personalised recommendations