Skip to main content

Rigorous solution to the extended kinetic equations for homogeneous gas mixtures

  • Conference paper
  • First Online:
Book cover Mathematical Aspects of Fluid and Plasma Dynamics

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1460))

Abstract

The paper deals with a recently introduced extended kinetic theory for gas mixtures. Such a generalization is aimed at accounting for effects of removal, generation and source, as well as for the presence of a background medium. These physical effects are modeled by suitable gain and loss terms into the set of Boltzmann equations governing the gas distribution functions. The outstanding work done for the search of exact or rigorous analytical solutions to the standard Boltzmann equation in the space homogeneous case and for Maxwell scattering models is reviewed. It is then shown how the previous results can be generalized to treat also gas mixtures in the extended version. In particular, in spite of the nonlinearities, a Fourier transform technique, with suitably defined generating functions, leads to a hierarchy of moment equations solvable in cascade, and a series reconstruction of the distribution functions, converging in an appropriate Hilbert space, follows then by resorting to a Bobylev transformation. Finally, the role played by the theory of dynamical systems in extended kinetic theory is discussed, and some examples of application are presented and commented on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Arneodo, P. Coullet, J. Peyraud, C. Tresser, Strange attractors in Volterra equations for species in competition, J.Math.Biol. 14, 153–157(1982).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Barnsley, H. Cornille, On a class of solutions of the Krook-Tjon-Wu model of the Boltzmann equation, J.Math.Phys. 21, 1176–1193(1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. R.O. Barrachina, C.R. Garibotti, Nonisotropic solutions of the Boltzmann equation, J.Stat.Phys. 45, 541–560(1986).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. A.V. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules, Sov.Phys.Dokl. 20, 820–822(1976).

    ADS  Google Scholar 

  5. A.V. Bobylev, Exact solutions of the Boltzmann equation, Sov.Phys.Dokl. 20, 822–824(1976).

    ADS  Google Scholar 

  6. V.C. Boffi, V. Franceschini, G. Spiga, Dynamics of a gas mixture in an extended kinetic theory, Phys.Fluids 28, 3232–3236(1985).

    Article  ADS  MATH  Google Scholar 

  7. V.C. Boffi, V.G. Molinari, Nonlinear transport problems by factorization of the scattering probability, Nuovo Cimento 65B, 29–44(1981).

    Article  ADS  Google Scholar 

  8. V.C. Boffi, A. Rossani, On the Boltzmann system for a mixture of reacting gases, to be published.

    Google Scholar 

  9. V.C. Boffi, G. Spiga, Global solution to a nonlinear integral evolution problem in particle transport theory, J.Math.Phys. 23, 2299–2303(1982).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. V.C. Boffi, G. Spiga, J.R. Thomas, Solution of a nonlinear integral equation arising in particle transport theory, J.Comp.Phys. 59, 96–107(1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. V.C. Boffi, G. Spiga, Exact time dependent solutions to the nonlinear Boltzmann equations, in Rarefied Gas Dynamics 15, V. Boffi and C. Cercignani Editors, Vol. 1, 55–63, Teubner, Stuttgart, 1986.

    Google Scholar 

  12. V.C. Boffi, G. Spiga, Extended kinetic theory for gas mixtures in the presence of removal and regeneration effects, Z.A.M.P.(J.Appl.Math.Phys.) 37, 27–42(1986).

    Article  MathSciNet  MATH  Google Scholar 

  13. V.C. Boffi, G. Spiga, Calculation of the number densities in an extended kinetic theory of gas mixtures, Trans.Th.Stat.Phys. 16, 175–188(1987).

    Article  MATH  Google Scholar 

  14. C. Cercignani, Theory and Application of the Boltzmann Equation, Scottish Academic Press, Edinburgh, 1975.

    MATH  Google Scholar 

  15. H. Cornille, On the Krook-Wu model of the Boltzmann equation, J.Stat.Phys. 23, 149–166(1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. H. Cornille, Oscillating and absolute Maxwellians: Exact solutions for (d>1)-dimensional Boltzmann equations, J.Math.Phys. 27, 1373–1386(1986).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. H. Cornille, A. Gervois, Power-like decreasing solutions of the nonlinear Boltzmann equation corresponding to Maxwellian interaction, Phys.Lett. 79A, 291–294(1980).

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Cornille, A. Gervois, Powerlike decreasing solutions of the Boltzmann equation for a Maxwell gas, J.Stat.Phys. 26, 181–217(1981).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. P. Cvitanovic Editor, Universality in Chaos, A. Hilger Ltd, Bristol, 1984.

    MATH  Google Scholar 

  20. G. Dukek, T.F. Nonnenmacher, Similarity solutions of the nonlinear Boltzmann equation generated by Lie group methods, in Applications of Mathematics in Technology, V. Boffi and H. Neunzert Editors, 448–468, Teubner, Stuttgart, 1984.

    Google Scholar 

  21. G. Dukek, D. Rupp, On the nonlinear spatially homogeneous Boltzmann equation with an external source: Exact generating functions for all moments, Z.A.M.P. (J.Appl.Math.Phys.) 37, 837–848(1986).

    Article  MathSciNet  MATH  Google Scholar 

  22. M.H. Ernst, Nonlinear model Boltzmann equations and exact solutions, Phys.Rep. 78, 1–171(1981).

    Article  ADS  MathSciNet  Google Scholar 

  23. M.J. Feigenbaum, Universal behavior in nonlinear systems, Los Alamos Science 1, 4–27(1980).

    MathSciNet  Google Scholar 

  24. V. Franceschini, C. Tebaldi, Sequences of infinite bifurcations and turbulence in a five-mode truncation of the Navier-Stokes equations, J.Stat.Phys. 21, 707–726(1979).

    Article  ADS  MathSciNet  Google Scholar 

  25. B.D. Ganapol, G. Spiga, D.H. Zanette, An accurate evaluation of the distribution function in nonlinear extended kinetic theory, to be published.

    Google Scholar 

  26. B.D. Ganapol, S.Oggioni, G. Spiga, Evaluation of the distribution function for the N species Boltzmann equation in an infinite homogeneous medium, in preparation.

    Google Scholar 

  27. B.S. Goh, Management and Analysis of Biological Populations, Elsevier-North-Holland, New York, 1980.

    Google Scholar 

  28. R.H. Goodwin, A growth cycle, in Socialism, Capitalism and Economic Growth, C.H. Feinstein Editor, 54–58, Cambridge Univ. Press, London 1967.

    Google Scholar 

  29. H. Grad, Principles of the kinetic theory of gases, in Handbuch der Physik, Vol. 12, 205–294, Springer, Berlin, 1958.

    Google Scholar 

  30. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983.

    Book  MATH  Google Scholar 

  31. E.M. Hendriks, T.M. Nieuwenhuizen, Solution to the nonlinear Boltzmann equation for Maxwell models for nonisotropic initial conditions, J.Stat.Phys. 29, 59–78(1982).

    Article  MathSciNet  Google Scholar 

  32. J.P. Holloway, J.J. Dorning, The dynamics of coupled nonlinear model Boltzmann equations, J.Stat.Phys. 49, 607–660(1987).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. E. Ikenberry, C. Truesdell, On the pressures and the flux of energy in a gas according to Maxwell's kinetic theory, J.Rat.Mech.Anal. 5, 1–54(1956).

    MathSciNet  MATH  Google Scholar 

  34. M. Krook, T.T. Wu, Exact solutions of the Boltzmann equation, Phys.Fluids 20, 1589–1595(1977).

    Article  ADS  MATH  Google Scholar 

  35. R.Lupini, S. Oggioni, G. Spiga, Dynamics of a breeding process in a mixture of reacting gases, in preparation.

    Google Scholar 

  36. R. Lupini, G. Spiga, Chaotic dynamics of spatially homogeneous gas mixtures, Phys.Fluids 31, 2048–2051(1988).

    Article  ADS  MathSciNet  Google Scholar 

  37. S.V.G. Menon, Solution of the nonlinear Boltzmann equation for test particle diffusion with removal events, Phys.Lett. 113A, 79–81(1985).

    Article  ADS  Google Scholar 

  38. R.G. Muncaster, On generating exact solutions of the Maxwell-Boltzmann equation, Arch.Rat.Mech.Anal. 70, 79–90(1979).

    Article  MathSciNet  MATH  Google Scholar 

  39. A.A. Nikolskii, The simplest exact solutions of the Boltzmann equation for the motion of a rarefied gas, Sov.Phys.Dokl. 8, 633–635(1964).

    ADS  MathSciNet  Google Scholar 

  40. T.F. Nonnenmacher, Application of the similarity method to the nonlinear Boltzmann equation, Z.A.M.P.(J.Appl.Math.Phys.) 35, 680–691(1984).

    Article  MathSciNet  MATH  Google Scholar 

  41. T.F. Nonnenmacher, Exact similarity solutions for nonlinear particle transport in a host medium, Trans.Th.Stat.Phys. 15, 1007–1021(1986).

    Article  MathSciNet  MATH  Google Scholar 

  42. P. Richetti, A. Arneodo, The periodic-chaotic sequences in chemical reactions: a scenario close to homoclinic conditions, Phys.Lett. 109A, 359–366(1985).

    Article  ADS  MathSciNet  Google Scholar 

  43. D. Rupp, G. Dukek, Influence of various source terms on the relaxation process in a binary gas mixture, in Rarefied Gas Dynamics 15, V. Boffi and C. Cercignani Editors, 75–84, Teubner, Stuttgart, 1986.

    Google Scholar 

  44. D. Rupp, G. Dukek, T.F. Nonnenmacher, Particle transport in a host medium with an external source: exact solutions for a nonlinear homogeneous Boltzmann equation, Z.A.M.P.(J.Appl.Math.Phys.) 39, 605–618(1988).

    Article  MathSciNet  MATH  Google Scholar 

  45. D. Rupp, T.F. Nonnenmacher, Solutions to the nonlinear Boltzmann equation for particle transport in a host medium, Phys.Fluids 29, 2746–2747(1986).

    Article  ADS  MATH  Google Scholar 

  46. G. Spiga, Nonlinear problems in particle transport theory, in Applications of Mathematics in Technology, V. Boffi and H. Neunzert Editors, 430–447, Teubner, Stuttgart, 1984.

    Google Scholar 

  47. G. Spiga, On some problems in nonlinear transport, in VII Congresso Nazionale A.I.M.E.T.A., Vol. 1, 51–62, C.D.C., Udine, 1984.

    Google Scholar 

  48. G. Spiga, A generalized BKW solution of the nonlinear Boltzmann equation with removal, Phys.Fluids 27, 2599–2600(1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. G. Spiga, Dynamical systems in nonlinear transport theory, Math.Rep.7/87, Univ. of Bari, Bari, 1987.

    Google Scholar 

  50. G. Spiga, R.L. Bowden, V.C. Boffi, On the solution to a class of nonlinear integral equations arising in transport theory, J.Math.Phys. 25, 3444–3449(1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. G. Spiga, T.F. Nonnenmacher, V.C. Boffi, Moment equations for the diffusion of the particles of a mixture via the scattering kernel formulation of the nonlinear Boltzmann equation, Physica 131A, 431–448(1985).

    Article  ADS  MathSciNet  Google Scholar 

  52. G. Spiga, P. Vestrucci, V.C. Boffi, Dynamics of gas mixtures in an extended kinetic theory, in Selected Problems of Modern Continuum Mechanics, W. Kosinski, T. Manacorda, A. Morro, T. Ruggeri Editors, 157–168, Pitagora, Bologna, 1987.

    Google Scholar 

  53. G. Tenti, W.H. Hui, Some classes of exact solutions of the nonlinear Boltzmann equation, J.Math.Phys. 19, 774–779(1978).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. C. Truesdell, R.G. Muncaster, Fundamentals of Maxwell's Kinetic Theory of a Simple Monoatomic Gas, Academic Press, New York, 1980.

    Google Scholar 

  55. G. Uhlenbeck, G. Ford, Lectures in Statistical Mechanics, American Physical Society, Providence, R.I., 1963.

    MATH  Google Scholar 

  56. L. Waldmann, Transporterscheinungen in Gasen von mittlerem Druck, in Handbuch der Physik, Vol. 12, 295–514, Springer, Berlin, 1958.

    Google Scholar 

  57. U. Weinert, S.L. Lin, E.A. Mason, Solutions to the nonlinear Boltzmann equation describing relaxation to equilibrium, Phys.Rev. 22A, 2262–2269(1980).

    Article  ADS  MathSciNet  Google Scholar 

  58. D.H. Zanette, Two velocity gas diffusion with removal and regeneration processes, Physica 148A, 288–297(1988).

    Article  ADS  Google Scholar 

  59. D.H. Zanette, R.O. Barrachina, Nonlinear particle diffusion in a time dependent host medium, Phys.Fluids 31, 502–505(1988).

    Article  ADS  Google Scholar 

  60. D.H. Zanette, C.R. Garibotti, R.O. Barrachina, Power-law decreasing in solutions of the Boltzmann equation, Phys.Lett. 120A, 219–222(1987).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Giuseppe Toscani Vinicio Boffi Salvatore Rionero

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Spiga, G. (1991). Rigorous solution to the extended kinetic equations for homogeneous gas mixtures. In: Toscani, G., Boffi, V., Rionero, S. (eds) Mathematical Aspects of Fluid and Plasma Dynamics. Lecture Notes in Mathematics, vol 1460. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0091369

Download citation

  • DOI: https://doi.org/10.1007/BFb0091369

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53545-4

  • Online ISBN: 978-3-540-46779-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics