The Hahn-Banach theorem and a restricted inductive definition

  • Mariko Yasugi
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 891)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Ackermann, Konstruktiver Aufbau eines Abschnitts der zweiter Cantorschen Zahlenklasse, Math. Zeit. 53 (1951), 403–413.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    S. Banach, Theóries des Opérations Lineares, Chealsea Publ. Co., N.Y. (1955).Google Scholar
  3. 3.
    E. Bishop, Foundations of Constructive Analysis, McGraw-Hill Book Co., N.Y. (1967).zbMATHGoogle Scholar
  4. 4.
    E. Bishop, Mathematics as a numerical language, Intuitionism and Proof Theory, edited by J. Myhill, A. Kino and R. E. Vesley, North-Holland Publ. Co., Amsterdam (1970), 53–71.Google Scholar
  5. 5.
    D. S. Bridges, Constructive Functional Analysis, Pitman, London (1979).zbMATHGoogle Scholar
  6. 6.
    S. Feferman, Theories of finite type related to mathematical logic, edited by J. Barwise, Studies in Logic and the Foundations of Mathematics 90 North-Holland Publ. Co., Amsterdam (1977).Google Scholar
  7. 7.
    H. Friedman, Set theoretic foundations for constructive analysis, Ann. Math. (2) 105 (1977), 1–28.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    N. Goodman—J. Myhill, The formalization of Bishop's constructive mathematics, Toposes, Algebraic Geometry and Logic, Lecture Notes in Mathematics 274, Springer-Verlag, Berlin (1972), 83–96.CrossRefGoogle Scholar
  9. 9.
    H. Hahn, Über lineare Gleichungssysteme in lineare Räumen, J. reine und angew. Math. 157 (1927), 214–229.zbMATHGoogle Scholar
  10. 10.
    G. Kreisel, Analysis of the Cantor-Bendixson theorem by means of the analytic hierarchy, Bulletin of the Polish Acad. Sci. 7 (1959), 371–391.MathSciNetzbMATHGoogle Scholar
  11. 11.
    G. Kreisel, The axiom of choice and the class of hyperarithmetic functions, Dutch Acad. A, 65 (1962), 307–319.MathSciNetzbMATHGoogle Scholar
  12. 12.
    W. Rudin, Real and Comolex Analysis, McGraw-Hill Book Co., N.Y. (1966).Google Scholar
  13. 13.
    G. Takeuti, Proof Theory, North-Holland Publ. Co., Amsterdam (1975).zbMATHGoogle Scholar
  14. 14.
    G. Takeuti, Two Applications of Logic to Mathematics, Iwanami Shoten Publ. Co. and Princeton Univ. Press, Tokyo (1978).zbMATHGoogle Scholar
  15. 15.
    M. Yasugi, Arithmetically definable analysis, Proceedings of Research Institute of Mathematical Science, Kyoto University 180 (1973), 39–51.Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Mariko Yasugi
    • 1
  1. 1.University of TsukubaJapan

Personalised recommendations