Boolean valued combinatorics

  • Kanji Namba
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 891)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. J. Cohen: The independence of the continuum hypothesis I, II, Proc. Nat. Acad. US, 50 (1963) 1143–1148; 51 (1964) 105–110.CrossRefzbMATHGoogle Scholar
  2. [2]
    K. Gödel: The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory, Ann. Math. Studies, Princeton Univ. Press 1940.Google Scholar
  3. [3]
    T. Jech: Set theory, Academic Press 1978.Google Scholar
  4. [4]
    K. Kunen: Inaccessibility properties of cardinals, Stanford Univ. Ph.D. Thesis.Google Scholar
  5. [5]
    D. A. Martin, R. M. Solovay: Internal Cohen extensions, Ann. Math. Logic 2 (1970) 143–178.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    K. Namba: On the closed unbounded ideal of ordinal numbers, Comm. Math. Univ. St. Pauli, Tokyo 22 (1973) 33–56.MathSciNetzbMATHGoogle Scholar
  7. [7]
    D. S. Scott, R. M. Solovay: Boolean valued models for set theory, Lecture note, Summer Institute on Axiomatic Set Theory, UCLA, 1967.Google Scholar
  8. [8]
    J. H. Silver: Some applications of model theory in set theory, Ann. Math. Logic 3 (1971) 45–110.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    R. M. Solovay: A model of set theory in which every set of reals is Lebesgue measurable, Ann. Math. 92 (1970) 1–56.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    R. M. Solovay, S. Tennenbaum: Iterated Cohen extensions and Souslin's problem, Ann. Math. 94 (1971) 201–245.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Kanji Namba

There are no affiliations available

Personalised recommendations