Fixpunktprinzipien und Freie Randwertaufgaben

  • K. -H. Hoffmann
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 878)


It is the aim of this paper to give some insight how fixed point principles work to develop results in pure analytical as well as in numerical respect on the field of free boundary problems for partial differential equations. In the beginning a series of examples is presented where free boundaries become involved in all three classical types of partial differential equations elliptic, hyperbolic and parabolic. Later on equations of parabolic type only are studied in detail. It is shown how Schauder's fixed point theorem can be applied to prove existence in melting problems as well as in a model describing the mixture of different fluids. Numerical experiments confirm that these methods can also be useful to obtain practical results.


Free Boundary Problem Melting Problem Fixed Point Principle Parabolic Free Boundary Problem Hyperbolic Free Boundary Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4. Literatur

  1. [1]
    BAIOCCHI, C., V. COMINCIOLI, E. MAGENES, G.A. POZZI: Free boundary problems in the theory of fluid flow through porous media. Existence and uniqueness theorems. Ann. Math. Pura Appl. 97 (1973), 1–82.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    BAIOCCHI, C., V. COMINCIOLI, L. GUERRI, G. VOLPI: Free boundary Problems in the theory of fluid flow through porous media. A numerical approach. Calculo 10, 1 (1973).Google Scholar
  3. [3]
    BAUMEISTER, J., K.-H. HOFFMANN, P. JOCHUM: Numerical solution of a parabolic free boundary problem via Newton's method. J. Inst. Maths. Applics 25 (1980), 99–109.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    BRAESS, D.: Private Mitteilung (1981).Google Scholar
  5. [5]
    CANNON, J.R., K.-H. HOFFMANN: Optimale Kontrolle eines freien Randes in der Gasdynamik. Preprint Nr. 110/80, FU-Berlin.Google Scholar
  6. [6]
    DUVAUT, G.: Résolution d'un problème de Stefan (fusion d'un bloc de glace a zéro degré). C.R. Acad. Sci. Paris 276 (1973), 1461–1463.MathSciNetzbMATHGoogle Scholar
  7. [7]
    EVANS, L.C.: A free boundary problem: The flow of two immiscible fluids in a one-dimensional porous medium: I. Ind. Univ. Math. J. 26 (1977), 915–931.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    FRIEDMANN, A.: The Stefan problem in several space variables. Amer. Math. Soc. Trans. 133 (1968), 51–87.MathSciNetCrossRefGoogle Scholar
  9. [9]
    HILL, C.D.: A hyperbolic free boundary problem. J. Math. Anal. Appl. 31 (1970), 117–129.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    HOFFMANN, K.-H.: Monotonie bei nichtlinearen Stefan-Problemen. ISNM 39 (1978), 162–190.MathSciNetzbMATHGoogle Scholar
  11. [11]
    HOFFMANN, K.-H.: Monotonie bei Zweiphasen-Stefan-Problemen. Numer. Funct. Anal. Optim. 1 (1979), 79–112.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    ICHIKAWA, Y., N. KIKUCHI: A one-phase multidimensional Stefan problem by the method of variational inequalities. Internat. J. Numer. Methods Engrg. 14 (1979), 1197–1220.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    ICHIKAWA, Y., N. KIKUCHI: ibi demGoogle Scholar
  14. [14]
    KRÜGER, H.: Zum Newtonverfahren für ein Stefanproblem. Erscheint in INSM (1981).Google Scholar
  15. [15]
    KYNER, W.T.: An existence and uniqueness theorem for a nonlinear Stefan problem. J. of Math. and Mech. 8 (1959), 483–498.MathSciNetzbMATHGoogle Scholar
  16. [16]
    STEFAN, J.: Über einige Probleme der Theorie der Wärmeleitung. S.B. Wien, Akad. Mat. Naturw. 98, 173–484.Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • K. -H. Hoffmann
    • 1
  1. 1.Institut für Mathematik IIIFreie Universität BerlinBerlin 33

Personalised recommendations