A duffing equation with more than 20 branch points

  • K. -H. Becker
  • R. Seydel
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 878)


The differential equation of a Duffing oscillator is presented which exhibits an interesting branching behaviour. Depending on the frequency of the excitation, there is a great variety of different types of solutions. Extensive numerical results are obtained by the means of classical numerical analysis.


Branch Point Phase Plane Strange Attractor Duffing Oscillator Duffing Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. [1]
    R. Bulirsch: Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung. Report der Carl-Cranz-Gesellschaft (1971)Google Scholar
  2. [2]
    R. Bulirsch, W. Oettli, J. Stoer (ed.): Optimization and optimal control. Proceedings of a conference held at Oberwolfach, 1974. Lecture Notes, Vol. 477, Springer, Berlin-Heidelberg-New York (1975)Google Scholar
  3. [3]
    R. Bulirsch, J. Stoer: Numerical treatment of ordinary differential equations by extrapolation methods. Numer. Math. 8 (1966), 1–13MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    R. Bulirsch, J. Stoer, P. Deuflhard: Numerical solution of nonlinear two-point boundary value problems I. to appear in Numer. Math., Handbook Series ApproximationGoogle Scholar
  5. [5]
    P. Deuflhard: A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numer. Math. 22 (1974) 289–315MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P. Deuflhard: A relaxation strategy for the modified Newton method. in [2]Google Scholar
  7. [7]
    E. Fehlberg: Klassische Runge-Kutta Formeln fünfter und siebenter Ordnung mit Schrittweitenkontrolle. Computing 4 (1969), 93–106MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    P. Holmes: A nonlinear oscillator with a strange attractor. Phil. Trans. Roy. Soc. London A. 292 (1979), 419–448MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    H.G. Hussels: Schrittweitensteuerung bei der Integration gewöhnlicher Differentialgleichungen mit Extrapolationsverfahren. Universität zu Köln, Mathem. Institut, Diplomarbeit (1973)Google Scholar
  10. [10]
    R. Seydel: Numerical computation of branch points in ordinary differential equations. Numer. Math. 32 (1979), 51–68MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    R. Seydel: Programme zur numerischen Behandlung von Verzweigungsproblemen bei nichtlinearen Gleichungen und Differentialgleichungen. ISNM 54 (1980), 163–175MathSciNetzbMATHGoogle Scholar
  12. [12]
    R. Seydel: The strange attractors of a Duffing equation-dependence on the exciting frequency. Technische Universität München, Institut für Mathematik, Bericht M8019 (1980)Google Scholar
  13. [13]
    J. Stoer, R. Bulirsch: Introduction to numerical analysis. Springer, Berlin-Heidelberg-New York (1980)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • K. -H. Becker
    • 1
  • R. Seydel
    • 2
  1. 1.Lehrstuhl A für MechanikTechnische Universität MünchenMünchen 2
  2. 2.Institut für MathematikTechnische Universität MünchenMünchen 2

Personalised recommendations