Advertisement

Lower and upper 2-estimates for order bounded sequences and Dunford-Pettis operators between certain classes of Banach lattices

  • Frank Räbiger
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1470)

Abstract

We introduce the class of weak Schur spaces, i.e., Banach lattices in which relatively weakly compact sets and almost order bounded sets coincide. There follows a detailed study of Banach lattices in which every semi-normalized, order bounded, weakly null sequence contains a subsequence satisfying a lower, resp. an upper, 2-estimate. From the previous results we obtain conditions under which non-Dunford-Pettis operators between certain classes of Banach lattices fix a copy of ℓ2.

Keywords

Banach Lattice Order Interval Orlicz Function Null Sequence Unit Vector Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.J. Aldous and D.H. Fremlin, Colacunary sequences in L-spaces, Studia Math., 71 (1982), 297–304.MathSciNetzbMATHGoogle Scholar
  2. 2.
    C.D. Aliprantis and O. Burkinshaw, “Locally Solid Riesz Spaces”, Academic Press, New York, San Francisco, London, 1978.zbMATHGoogle Scholar
  3. 3.
    C.D. Aliprantis and O. Burkinshaw, “Positive Operators”, Academic Press, Orlando, London, 1985.zbMATHGoogle Scholar
  4. 4.
    J. Bourgain, Dunford-Pettis operators on L 1 and the Radon-Nikodým property, Israel J. Math., 37 (1980), 34–47.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Bourgain, A characterization of non-Dunford-Pettis operators on L 1, Israel J. Math., 37 (1980), 48–53.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    T. Figiel, W.B. Johnson and L. Tzafriri, On Banach lattices and spaces having local unconditional structure, with applications to Lorentz function spaces, J. Approximation Theory, 13 (1975), 395–412.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    N. Ghoussoub and H.P. Rosenthal, Martingales, G -embeddings and quotients of L 1, Math. Ann., 264 (1983), 321–332.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    W.B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures in Banach spaces, Memoirs Amer. Math. Soc., 217 (1979).Google Scholar
  9. 9.
    B. Kühn, Orthogonalkompakte Teilmengen topologischer Vektorverbände, Manuscripta Math., 33 (1981), 217–226.CrossRefzbMATHGoogle Scholar
  10. 10.
    H.E. Lacey, “The Isometric Theory of Classical Banach Spaces”, Springer-Verlag, Berlin, Heidelberg, New York, 1974.CrossRefzbMATHGoogle Scholar
  11. 11.
    D.H. Leung, On the weak Dunford-Pettis property, Arch. Math., 52 (1989), 363–364.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    J. Lindenstrauss and L. Tzafriri, “Classical Banach Spaces I. Sequence Spaces”, Springer-Verlag, Berlin, Heidelberg, New York, 1977.CrossRefzbMATHGoogle Scholar
  13. 13.
    J. Lindenstrauss and L. Tzafriri, “Classical Banach Spaces II. Function Spaces”, Springer-Verlag, Berlin, Heidelberg, New York, 1979.CrossRefzbMATHGoogle Scholar
  14. 14.
    P. Meyer-Nieberg, Zur schwachen Kompaktheit in Banachverbänden, Math. Z., 134 (1973), 303–315.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    F. Räbiger, Beiträge zur Strukturtheorie der Grothendieck-Räume, Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Math.-Naturwiss. Klasse, Jahrgang 1985, 4. Abh., Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.CrossRefzbMATHGoogle Scholar
  16. 16.
    F. Räbiger, Lower 2-estimates for sequences in Banach lattices, Proc. Amer. Math. Soc. 111 (1991), 81–83.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    H.P. Rosenthal, Convolution by a biased coin, The Altgeld Book 1975/76, Univ. of Illinois, Functional Analysis Seminar.Google Scholar
  18. 18.
    H.H. Schaefer, “Banach Lattices and Positive Operators”, Springer-Verlag, New York, Heidelberg, Berlin, 1974.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Frank Räbiger
    • 1
  1. 1.Mathematisches InstituteUniversität TübingenTübingenF.R.G.

Personalised recommendations