Operators which factor through Banach lattices not containing c0

  • N. Ghoussoub
  • W. B. Johnson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1470)


Banach Space Positive Operator Banach Lattice Order Interval Continuous Norm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.D. Aliprantis and O. Burkinshaw, Positive operators, Academic Press, 1984.Google Scholar
  2. 2.
    A.V. Bukhvalov and A.A. Danilevich, Boundary properties of analytic and harmonic functions with values in Banach space, Mat. Zametki 31 (1982), 203–214. English translation: Math. Notes 31 (1982), 104–110.MathSciNetzbMATHGoogle Scholar
  3. 3.
    A.V. Bukhvalov, On the analytic Radon-Nikodým property, unpublished manuscript.Google Scholar
  4. 4.
    T. Figiel, N. Ghoussoub, and W.B. Johnson, On the structure of non-weakly compact operators on Banach lattices, Math. Ann. 257 (1981), 317–334.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    N. Ghoussoub and W.B. Johnson, On subspaces of Banach lattices not containing C(Δ), unpublished.Google Scholar
  6. 6.
    N. Ghoussoub and W.B. Johnson, Counterexamples to several problems on the factorization of bounded linear operators, Proc. AMS 92 (1984), 233–238.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    N. Ghoussoub and W.B. Johnson, Factoring operators through Banach lattices not containing C(0,1), Math. Zeit. 194 (1987), 153–171.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II: Function spaces, Ergebnisse Math. Grenzgebiete 97, Springer-Verlag, 1979.Google Scholar
  9. 9.
    C. Niculescu, Weak compactness in Banach lattices, J. Operator Theory 6 (1981), 217–231.MathSciNetzbMATHGoogle Scholar
  10. 10.
    C. Niculescu, Order σ-continuous operators on Banach lattices, Lecture Notes in Math. 991 (1983), 188–201.MathSciNetCrossRefGoogle Scholar
  11. 11.
    C. Niculescu, Operators of Type A and local absolute continuity, J. Operator Theory 13 (1985), 49–61.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • N. Ghoussoub
    • 1
  • W. B. Johnson
    • 2
  1. 1.Department of MathematicsUniversity of BritishColumbia, VancouverCanada
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations