Fundamental congruences on Lawson semilattices

  • Albert Stralka
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 871)


Congruence Lattice Continuous Lattice Topological Algebra Kernel Operator Hausdorff Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Clinkenbeard, Congruences on Topological Lattices, Dissertation Univ. of Calif., Riverside, 1976.Google Scholar
  2. [2]
    G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove and D. S. Scott, "A compendium of continuous lattices," Springer Verlag, Berlin, Heidelberg, New York, 1980.CrossRefzbMATHGoogle Scholar
  3. [3]
    K. H. Hofmann and M. W. Mislove, "The lattice of kernel operators and topological algebra," Math. Zeit. 154(1977), 175–188.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    K. H. Hofmann, M. W. Mislove and A. R. Stralka, "Dimension raising maps in topological algebra," Math. Zeit. 135(1973), 1–36.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. D. Lawson, "Topological semilattices with small semilattices," J. London Math. Soc. (2)1(1969), 719–724.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    K. Numakura, "Theorems on compact totally disconnected semigroups and lattices," Proc. Amer. Math. Soc. 8(1957), 623–626.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A. R. Stralka, "The congruence extension property for compact topological lattices," Pacific J. Math. 38(1971), 795–802.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Albert Stralka
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaRiverside
  2. 2.Fachbereich MathematikTechnische Hochschule DarmstadtDarmstadt

Personalised recommendations