Z-Continuous algebras

  • Evelyn Nelson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 871)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Adámek. Construction of Free Ordered Algebras. Manuscript, FEL, CVUT, Prague, 1979.Google Scholar
  2. 2.
    ADJ (= Goguen, Thatcher, Wagner and Wright). Initial Algebra Semantics and Continuous Algebras. J.A.C.M. 24 (1977) 68–95.MathSciNetzbMATHGoogle Scholar
  3. 3.
    ADJ. Free Continuous Theories. IBM Research Report RC6906, 1977 Yorktown Heights, N.Y.Google Scholar
  4. 4.
    ADJ. A Uniform approach to inductive p.o. sets and inductive closure in Mathematical Foundations of Computer Science. LNCS 53, Springer 1977. Also appeared in Theoretical Computer Science, 7 (1978) 57–77.CrossRefGoogle Scholar
  5. 5.
    B. Banaschewski and E. Nelson. Completions of Partially Ordered Sets as Reflections. Comp. Sci. Tech. Rep. 79-CS-6, McMaster University, 1979.Google Scholar
  6. 6.
    Stephen Bloom. Varieties of Ordered Algebras. Journal of Computer and System Sciences 13 (1976) 200–212.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Daniel Lehmann. On the algebra of order. Manscript, Mathematics Department, Hebrew University, Jerusalem 1979.Google Scholar
  8. 8.
    S. Mac Lane. Categories for the Working Mathematician. Springer 1971.Google Scholar
  9. 9.
    J. Meseguer. On Order-Complete Universal Algebra and Enriched Functorial Semantics in Fundamentals of Computation Theory, L.N.C.S. 56 Springer 1977 294–301.Google Scholar
  10. 10.
    J. Meseguer. Ideal Monads and Z-P.o. sets. Manuscript, Mathematics Department, University of California at Berkeley.Google Scholar
  11. 11.
    R. Milne and C. Strachey. A Theory of Programming Language Semantics. Chapman and Hall, London, 1976.zbMATHGoogle Scholar
  12. 12.
    G. Plotkin. A Powerdomain Construction. SIAM J. Comput. 5 (1976) 452–487.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    John Reynolds. Notes on a Lattice — Theoretic Approach to the Theory of Computation. Syracuse University, 1972.Google Scholar
  14. 14.
    John Reynolds. Semantics of the Domain of Flow Diagrams. JACM 24 (1977) 484–503.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    D. Scott. Outline of a mathematical theory of computation. Proc. 4th Ann. Princeton Conf. on Information Sciences and Systems, 1969 p.169–176.Google Scholar
  16. 16.
    D. Scott. Lattice Theory, Data Types and Semantics in Formal Semantics of Programming Languages, Courant Computer Science Symposium 2, Sept. 1970. Ed. R. Rustin, Prentice-Hall 1972. 65–106.Google Scholar
  17. 17.
    D. Scott. Continuous Lattices, LNM volume 274, Springer 1971, 97–136.Google Scholar
  18. 18.
    D. Scott. The Lattice of Flow Diagrams in Semantics of Algorithmic Languages, LNM 188, Springer 1971, 311–366.Google Scholar
  19. 19.
    D. Scott. Data Types as Lattices, SIAM J. Comput. 5 (1976) 522–587.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Evelyn Nelson
    • 1
  1. 1.McMaster UniversityHamiltonCanada

Personalised recommendations