Advertisement

Injective toposes

  • Peter T. Johnstone
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 871)

Keywords

Continuous Lattice Finite Limit Springer Lecture Note Algebraic Lattice Terminal Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cole, J.C.: The bicategory of topoi, and spectra. J. Pure and Applied Algebra (to appear).Google Scholar
  2. [2]
    Freyd, P.J.: The theories of functors and models. In "The Theory of Models" (ed. J.W. Addison, L. Henkin and A. Tarski), North-Holland 1965, 107–120.Google Scholar
  3. [3]
    Gabriel, P. and Ulmer, F.: "Lokal präsentierbare Kategorien". Springer Lecture Notes in Math. 221 (1971).Google Scholar
  4. [4]
    Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M. and Scott, D.S.: "A Compendium of Continuous Lattices". To appear.Google Scholar
  5. [5]
    Grothendieck, A. and Verdier, J.L.: Théorie des topos (SGA 4, exposés I-VI). Springer Lecture Notes in Math. 269–270 (1972).Google Scholar
  6. [6]
    Hoffmann, R.-E.: Sobrification of partially ordered sets. Semigroup Forum 17 (1979), 123–138.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Johnstone, P.T.: "Topos Theory". L.M.S. Mathematical Monographs no. 10, Academic Press 1977.Google Scholar
  8. [8]
    Johnstone, P.T.: Conditions related to De Morgan's law. In "Applications of Sheaves" (ed. M.P. Fourman, C.J. Mulvey and D.S. Scott), Springer Lecture Notes in Math. 753 (1979), 479–491.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Johnstone, P.T.: The Gleason cover of a topos, II. J. Pure and Applied Algebra (to appear).Google Scholar
  10. [10]
    Lambek, J. and Scott, P.J.: Intuitionist type theory and the free topos. J. Pure and Applied Algebra (to appear).Google Scholar
  11. [11]
    Mac Lane, S.: "Categories for the Working Mathematician". Graduate Texts in Mathematics no. 5, Springer-Verlag 1971.Google Scholar
  12. [12]
    Scott, D.S.: Continuous lattices. In "Toposes, Algebraic Geometry and Logic" (ed. F.W. Lawvere), Springer Lecture Notes in Math. 274 (1972), 97–136.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Peter T. Johnstone
    • 1
  1. 1.Department of Pure MathematicsUniversity of CambridgeEngland

Personalised recommendations