Advertisement

Continuous posets, prime spectra of completely distributive complete lattices, and Hausdorff compactifications

  • Rudolf-E. Hoffmann
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 871)

Keywords

Topological Space Complete Lattice Continuous Lattice Prime Spectrum Essential Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexandrov, P.S.: Diskrete Räume. Mat. Sbornik 2, 501–519 (1937).zbMATHGoogle Scholar
  2. 2.
    Alexandrov, P.S. and V.I. Ponomarev: (On bi-)compact extensions of topological spaces (Russian). Doklady Akad.Nauk SSSR 121, 575–578(1958).Cf.[40].Google Scholar
  3. 3.
    Alexandrov, P.S. and V.I. Ponomarev: (On bi-)compact extensions of topological spaces. (Russian). Vestnik Moskov.Univ., Ser.Mat.Mech.Astron.Fiz.Chim.14,93–108 (1960). Cf. [40].Google Scholar
  4. 4.
    Artin.M., Grothendieck,A., and J.Verdier: Théorie des topos et cohomologie étale des schémas (SGA IV). Revised edition: Springer LNM 269 (1972).Google Scholar
  5. 5.
    Banaschewski, B.: Frames and compactifications. In:Contributions to extension theory of topological structures. Proc.Symp.Berlin 1967, pp.29–33. Dtsch.Verlag d.Wiss.: Berlin 1969.zbMATHGoogle Scholar
  6. 6.
    Banaschewski, B.: Extensions of topological spaces. Can.Bull.Math.7,1–22(1964).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Banaschewski, B.: Essential extensions of To-spaces. General Topology and Appl.7, 233–246(1977).MathSciNetzbMATHGoogle Scholar
  8. 8.
    Birkhoff,G.: Lattice Theory. 3rd edn., Providence:1967Google Scholar
  9. 9.
    Bruns, G.: Darstellungen und Erweiterungen geordneter Mengen.I.J.reine angew.Math.209, 167–200(1962); II, ibidem 210, 1–23(1962). (Habilitationsschrift Mainz 1960).MathSciNetGoogle Scholar
  10. 10.
    Büchi, J.R.: Representation of complete lattices by sets. Portugaliae Math.11, 151–167(1952).MathSciNetzbMATHGoogle Scholar
  11. 11.
    Czászár, A.: Grundlagen der allgemeinen Topologie. Akademiai Kiadó: Budapest 1963.Google Scholar
  12. 12.
    Day, A.: Filter monads, continuous lattices and closure systems.Canada.J.Math.27, 50–59(1975).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Day, B.J. and G.M. Kelly: On topological quotient maps preserved by pullbacks or products. Proc.Cambridge Philos.Soc. 67, 553–558 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Downing, J.S.: Absolute retracts and extensors for non-normal spaces. General Topology and Appl.7,275–281(1977)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Ershov, Yu.L.: Continuous lattices and A-spaces, Soviet Math.,Doklady 13, 1551–1555(1973). Transl.from Doklady Akad.Nauk 207,523–526 (1972).zbMATHGoogle Scholar
  16. 16.
    Ershov, Yu.L.: The theory of A-spaces. Algebra Logic 12, 209–232(1975). Transl.from Algebra Logika 12, 369–416 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 16a.
    Freudenthal, H.: Über die Enden topologischer Räume und Gruppen.Math.Z.33, 692–713(1931).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 16b.
    Freudenthal, H.: Neuaufbau der Endentheorie. Amn. of Math. (2)43, 261–279 (1942).MathSciNetzbMATHGoogle Scholar
  19. 17.
    Gierz,G. and K.H. Hofmann: On a lattice-theoretical characterization of compact semilattices. Preprint.Google Scholar
  20. 18.
    Gierz,G., K.H.Hofmann, K.Keimel, J.D.Lawson, M.Mislove, and D.Scott: Revised version of [42].Google Scholar
  21. 19.
    Gierz, G. and K. Keimel: A lemma on primes appearing in algebra and analysis. Houston J.Math.3,207–224 (1977).MathSciNetzbMATHGoogle Scholar
  22. 19a.
    Herrlich,H.: Topologische Reflexionen und Coreflexionen. Springer LNM 78(1968).Google Scholar
  23. 20.
    Hoffmann, R.-E.: Sobrification of partially ordered sets. Semigroup Forum 17, 123–138(1979).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 21.
    Hoffmann, R.-E.: Essentially complete To-spaces. Manuscripta Math.27, 401–432(1979).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 22.
    Hoffmann, R.-E.: Continuous posets and adjoint sequences. Semigroup Forum 18, 173–188(1979).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 23.
    Hoffmann,R.-E.: Topological spaces admitting a "dual". In: Proc.conference on categorical topology held at FU Berlin. Springer LNM 719,pp.157–166(1979).Google Scholar
  27. 24.
    Hoffmann,R.-E.: Projective sober spaces. Preprint. Preliminary version in: Mathematik-Arbeitspapiere 18, pp.109–153. Universität Bremen 1979.Google Scholar
  28. 25.
    Hoffmann,R.-E.: Topological functors admitting generalized Cauchy-completions. In: Proc.Mannheim conference on categorical topology. Springer LNM 540,pp.286–344(1976).Google Scholar
  29. 25a.
    Hoffmann,R.-E.: Sobrification of To-spaces with injective hull. Under preparation.Google Scholar
  30. 26.
    Hofmann, K.H. and J.D. Lawson: The spectral theory of distributive continuous lattices. Trans.Amer.Math. Soc. 246, 285–310 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 27.
    Hunsaker, W. and W. Lindgren: Construction of quasi-uniformities. Math.Ann.188, 39–42(1970).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 28.
    Isbell, J.R.: Meet-continuous lattices. Symposia Mathematica 16 (Convegno sulla Topologica Insiemsistica e generale INDAM,Roma,Marzo 1973),pp.41–54. Academic Press: London 1974.Google Scholar
  33. 29.
    Isbell, J.R.: Function spaces and adjoints.Math.Scand 36 317–339 (1975).MathSciNetzbMATHGoogle Scholar
  34. 30.
    Lawson,J.D.: Continuous semilattices and duality.Memo, Jan.4,1977 (distributed to members of SCS).Google Scholar
  35. 31.
    Lawson, J.D.: The duality of continuous posets.Houston J.Math. (to appear).Google Scholar
  36. 32.
    Leuschen, J.E. and B.T. Sims: Stronger forms of connectivity. Rend.Circ.Mat.Palermo (II) 21,255–266 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  37. 33.
    Levine, N.: Strongly connected sets in topology.Amer.Math.Monthly 72, 1098–1101 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  38. 34.
    Markowsky,G. A motivation and generalization of Scott's notion of a continuous lattice. Preprint.Google Scholar
  39. 35.
    Markowsky, G. and B.K. Rosen: Bases for chain complete posets. IBM J.Res.Develop.20, 137–147 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  40. 35a.
    Murdeshwar,M.G. and S.A.Naimpally: Quasi-uniform topological spaces. Noordhoff 1966.Google Scholar
  41. 36.
    Papert, S.: Which distributive lattices are lattices of closed sets? Proc.Cambridge Phil.Soc.55, 172–176 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  42. 37.
    Plotkin, G.D.: A powerdomain construction. SIAM J.Computing 5, 452–487 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  43. 38.
    Raney, G.N.: Completely distributive complete lattices. Proc.Amer.Math.Soc.3,677–680 (1952).MathSciNetCrossRefzbMATHGoogle Scholar
  44. 39.
    Raney, G.N.: Tight Galois connections and complete distributivity. Trans.Amer.Math.Soc.97, 418–426 (1960).MathSciNetCrossRefzbMATHGoogle Scholar
  45. 40.
    Salzmann, H.: Reviews of [2] and [3]. In: Zentralblatt f.Math.85, 170 (1961) and ibid.91,360 (1962).Google Scholar
  46. 41.
    Schubert, H.: Categories. Berlin-Heidelberg-New York: Springer 1972.CrossRefzbMATHGoogle Scholar
  47. 42.
    Scott, D. Continuous lattices. In: Proc.Dalhousie conf. on toposes, algebraic geometry and logic,pp.97–136. Springer LNM 274 (1972).MathSciNetGoogle Scholar
  48. 43.
    SCS (=Seminar on Continuity in (Semi-)Lattices): A compendium of continuous lattices, part I: The lattice-theoretical and topological foundations of continuous lattices. Prepared by K.H.Hofmann (chap.I–III),J.Lawson (chap.IV), G.Gierz (chap.V), K.Keimel. Preliminary version (distributed at the workshop II "continuous lattices" at TH Darmstadt, July 1978).Google Scholar
  49. 44.
    Smirnov, Yu.M.: On proximity spaces (Russian).Mat.Sbornik N.S.31 (73),152–166 (1952).Cf.Zentralblatt f.Math.47, 419 (1953) (E.Burger).MathSciNetGoogle Scholar
  50. 45.
    Steiner, E.F.: The relation between quasi-proximities and topological spaces. Math.Ann.155, 194–195(1964).MathSciNetCrossRefzbMATHGoogle Scholar
  51. 46.
    Thron, W.J.: Lattice-equivalence of topological spaces. Duke Math.J. 29,671–679 (1962).MathSciNetCrossRefzbMATHGoogle Scholar
  52. 47.
    Ward, A.J.: Representations of proximity lattices. Ann.Univ.Sci.Budapest Rolando Eötvös, Sect.Math.17, 41–57 (1975).MathSciNetzbMATHGoogle Scholar
  53. 48.
    Wilson, R.L.: Relationships between continuous posets and compact Lawson posets. Abstract 750-A 19, Notices Amer.Math.Soc.24, A-628 (1977).Google Scholar
  54. 49.
    Wyler, O.: Injective spaces and essential extensions in Top. General Topology and Appl. 7, 247–249 (1977).MathSciNetzbMATHGoogle Scholar
  55. 50.
    Wyler, O.: Dedekind complete posets and Scott topologies. Memo, April 18,1977 (distributed to members of SCS).Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Rudolf-E. Hoffmann
    • 1
  1. 1.Fachbereich MathematikUniversität BremenBremenFederal Republic of Germany

Personalised recommendations