Verfeinerungs- und Kürzungssätze für Produkte geordneter topologischer Räume und für Funktionen (-halb-) verbände

  • Heiko Bauer
  • Klaus Keimel
  • Roland Köhler
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 871)


Priestley Space Dann Gilt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Duffus, D.: Toward a theory of finite partially ordered sets. Ph.D.Thesis, University of Calgary, 1978.Google Scholar
  2. [2]
    Duffus, D. und I. Rival: A logarithmic property for exponents of partially ordered sets. Canad. J. Math. 30(1978), 797–807.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Gierz, G. und K. Keimel: Topologische Darstellung von Verbänden. Math. Z. 150 (1976), 83–99.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Hashimoto, J.: On direct product decomposition of partially ordered sets. Ann. Math. 54 (1951), 315–318.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Jónsson, B. und R. McKenzie: Powers of partially ordered sets: Cancelation and refinement properties. Preprint.Google Scholar
  6. [6]
    Köhler, R.: Verfeinerung bei Priestley-Räumen und Kürzungsregeln für Funktionenverbände. Diplomarbeit, Darmstadt, 1979.Google Scholar
  7. [7]
    Nachbin, L.: Topology and order. Van Nostrand, 1965.Google Scholar
  8. [8]
    Stralka, A. R.: A partially ordered space which is not a Priestley space. Semigroup Forum (to appear).Google Scholar
  9. [9]
    Wille, R.: Cancellation and refinement results for function lattices. Houston J. Math. (to appear).Google Scholar
  10. [10]
    Duffus, D., B. Jónsson and I. Rival: Structure results for function lattices, Canad. J. Math. 30 (1978), 392–400.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Heiko Bauer
    • 1
  • Klaus Keimel
    • 1
  • Roland Köhler
    • 1
  1. 1.Fachbereich MathematikTechnische HochschuleDarmstadt

Personalised recommendations