Coherent frames

  • Bernhard Banaschewski
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 871)


Boolean Algebra Distributive Lattice Full Subcategory Principal Ideal Compact Hausdorff Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Banaschewski, Über nulldimensionale Räume. Math. Nachr. 13(1955), 129–140.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    _____ and C.J. Mulvey, Stone — Čech compactification of locales I. Houston J. Math. (to appear).Google Scholar
  3. 3.
    J. Flachsmeyer, Zur Spektralentwicklung topologscher Räume. Math. Ann. 144(1961), 253–274.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott, A compendium of continuous lattices. (to appear).Google Scholar
  5. 5.
    H. Herrlich and G.E. Strecker, Category Theory. Allyn and Bacon, Boston, 1973.zbMATHGoogle Scholar
  6. 6.
    K.H. Hofmann and M. Mislove, A survey on local compactness and continuous lattices. These Proceedings.Google Scholar
  7. 7.
    _____ and A. Stralka, The Pontryagin duality of compact zero-dimensional semilattices and its applications. Springer LNM 396, Springer-Verlag, Berlin-Heidelberg-New York, 1974.CrossRefzbMATHGoogle Scholar
  8. 8.
    P.T. Johnstone, Tychonoff's theorem without the axion of choice. Fund. Math. (to appear).Google Scholar
  9. 9.
    _____, The Gleason cover of a topos II. Preprint 1978.Google Scholar
  10. 10.
    J. Zos and C. Ryll-Nardzewski, Effectiveness of the representation theory for Boolean algebras. Fund. Math. 41(1954), 49–56.MathSciNetGoogle Scholar
  11. 11.
    J. Schröder, Das Wallman — Verfahren and inverse Limites. Quaest. Math. 2(1977), 325–333.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    H. Simmons, A couple of triples. Preprint 1978.Google Scholar
  13. 13.
    M.H. Stone, Topological representation of distributive lattices and Brouwerian logics. Cas. Mat. Fys. 67(1937), 1–25.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Bernhard Banaschewski

There are no affiliations available

Personalised recommendations