Skip to main content

On measuring the accuracy of the vortex method: Using a random method to model stable and untable flow

  • Convergence Of Vortex Methods
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1360))

Abstract

We have discussed the results of a numerical convergence study to analyze the accuracy of the random cortex method applied to viscous, incompressible flow in the laminar, transitional, and turbulent regimes. Our results indicate that the vortex method can be used to predict pointwise values in the laminar regime where the flow is steady and stable. In the turbulent regime, large-scale integrated quantities can be predicted and measured with an economy of vortex elements, and that global mechanisms can be analyzed. Beyond a certain resolution, the measurement of these large-scale quantities is less sensitive to additional refinement of numerical parameters. The value in additional refinement must then relate to the smaller, medium scales of the flow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.E. Abbot and S.J. Kline, J. Basic. Engrg., 317, (1962).

    Google Scholar 

  2. B.F. Armaly, F. Durst, J.C.F. Pereira and B. Schonung, J. Fluid Mech., 127, 473, (1983).

    Article  Google Scholar 

  3. P. Bradshaw and F.Y.F. Wong, J. Fluid.Mech., 52, 113, (1972).

    Article  Google Scholar 

  4. A.J. Chorin, J. Fluid Mech., 57 785, (1973).

    Article  MathSciNet  Google Scholar 

  5. M.K. Denham and M.A. Patrick, Trans. Instn. Chem. Engrs., 52, 361, (1974).

    Google Scholar 

  6. F. Durst and C. Tropea, in Structure of Complex Turbulent Shear Flows, IUTAM Symposium, edited by R. Dumas and L. Fulachier, (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  7. J.K. Eaton and J.P. Johnston, in "Turbulent Shear Flow 3", edited by L.J.S. Bradbury et al., (Springer-Verlag, New York 1982).

    Google Scholar 

  8. D.W. Etheridge and P.H. Kemp, J. Fluid Mech., 86, part 3, 545, (1978).

    Article  Google Scholar 

  9. A.F. Ghoniem, A.J. Chorin and A.K. Oppenheim, Philos. Trans. Roy. Soc. London, A304, 303, (1982).

    Article  Google Scholar 

  10. R.J. Goldstein, V.L. Eriksen, R.M. Olson, E.R.G. Eckert, Transactions of the ASME, 732, (1970).

    Google Scholar 

  11. L.P. Hackman, G.D. Raithby, A.B. Strong, Int. Jour. Num. Meth. Fluids, 4 711, (1984).

    Article  Google Scholar 

  12. H. Honji, J. Fluid Mech., 69, 229, (1975).

    Article  Google Scholar 

  13. J.P. Johnston, in "Turbulence", edited by P. Bradshaw, (Springer-Verlag, 1978).

    Google Scholar 

  14. J.L. Kueny and G. Binder, Viscous flow over a backward facing steps; an experimental investigation, preprint.

    Google Scholar 

  15. L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Pergammon, New York, 1975.

    MATH  Google Scholar 

  16. M.A. Leschziner, Computer Methods in Applied Mechanics and Engineering, 23, 293, (1980).

    Article  Google Scholar 

  17. W.D. Moss, S. Baker, L.J.S. Bradbury, in Turbulent Shear Flows I, (Editors, F. Durst et. al.), Springer-Verlag, 1979.

    Google Scholar 

  18. J. Periaux, O. Pironneau, F. Thomasset, in Fifth International GAMM Conference on Numerical Methods in Fluid Mechanics, Springer-Verlag, 1983. 9, 75, (1976).

    Google Scholar 

  19. J.A. Sethian, Identifying and tracking coherent structures in turbulent flow, in progress.

    Google Scholar 

  20. J.A. Sethian, J. Comput. Phys., 55, 425, (1984).

    Article  Google Scholar 

  21. J.A. Sethian, in Lectures in Applied Mathematics, 22, (1985).

    Google Scholar 

  22. J.A. Sethian and A.F. Ghoniem, "Validation Study for Vortex Methods", to appear, J. Comput. Phys., Feb. 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christopher Anderson Claude Greengard

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag

About this paper

Cite this paper

Sethian, J.A. (1988). On measuring the accuracy of the vortex method: Using a random method to model stable and untable flow. In: Anderson, C., Greengard, C. (eds) Vortex Methods. Lecture Notes in Mathematics, vol 1360. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0089773

Download citation

  • DOI: https://doi.org/10.1007/BFb0089773

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50526-6

  • Online ISBN: 978-3-540-46034-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics