On moduli of vector bundles

  • Shoshichi Kobayashi
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1422)


Modulus Space Vector Bundle Line Bundle Holomorphic Vector Bundle Complex Torus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    M.F. Atiyah, Vector bundles over an elliptic curves, Proc. London Math. Soc. (3) 7 (1957), 414–452.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2].
    A. Beauville, Variétés kählériennes dont la première classe de Chern est nulle, J. of Diff. Geometry 18 (1983), 755–782.MathSciNetzbMATHGoogle Scholar
  3. [3].
    K. Cho, Positivity of the curvature of the Weil-Petersson metric on the moduli space of stable vector bundles, Ph. D. thesis, Harvard Univ., 1985.Google Scholar
  4. [4].
    A. Fujiki, On primitively symplectic compact Kähler V-manifolds of dimension four, in Classification of Algebraic and Analytic Manifolds, pp. 71–250, Progr. Math. 39, Birkhäuser, 1983Google Scholar
  5. [5].
    M. Itoh, Geometry of anti-self-dual connections and Kuranishi map, J. Math. Soc. Japan 40 (1988), 9–33.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6].
    H. J. Kim, Moduli of Hermite-Einstein vector bundles, Math. Z. 195 (1987), 143–150.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7].
    S. Kobayashi, Recent results in complex differential geometry, Jber. d. Dt. Math.-Verein. 83 (1981), 147–158.MathSciNetzbMATHGoogle Scholar
  8. [8].
    S. Kobayashi, Submersions of CR submanifolds, Tohoku Math. J. 39 (1987), 95–100.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9].
    S. Kobayashi, Differential Geometry of Complex Vector Bundles, Iwanami Shoten/Princeton U. Press, 1987.Google Scholar
  10. [10].
    M. Lübke and C. Okonek, Moduli spaces of simple bundles and Hermitian-Einstein connections, Math. Ann. 276 (1987), 663–674.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11].
    S. Mukai, Semi-homogeneous vector bundles on an abelian variety, J. Math. Kyoto Univ. 18 (1978), 239–272.MathSciNetzbMATHGoogle Scholar
  12. [12].
    S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math. 77 (1984), 101–116.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13].
    A. J. Smith, Symplectic Kähler manifolds, Ph. D. thesis, Univ. of Calif., Berkeley, 1987.Google Scholar
  14. [14].
    H. Umemura, On a property of symmetric products of a curve of genus 2, Proc. Intl. Symp. on Algebraic Geometry, Kyoto 1977, pp.709–721.Google Scholar
  15. [15].
    H. Umemura, Moduli spaces of the stable vector bundles over abelian surfaces, Nagoya Math. J. 77 (1980), 47–60.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16].
    H. Wakakuwa, On Riemannian manifolds with homogeneous holonomy group Sp(n), Tohoku Math. J. 10 (1958), 274–303.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Shoshichi Kobayashi
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeley

Personalised recommendations