Stability properties in almost periodic systems of functional differential equations

  • Taro Yoshizawa
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 799)


Periodic Solution Asymptotic Stability Fixed Point Theorem Periodic System Exponential Dichotomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]-
    AMERIO, L., Soluzioni quasi-periodiche, o limitate, di sistemi differenziali non lineari quasi-periodici, o limitati, Ann. Mat. Pura Appl., 39(1955), 97–119.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]-
    BOCHNER, S., A new approach to almost periodicity, Proc. Nat. Acad. Sci. U.S.A., 48(1962), 2039–2043.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]-
    BROWDER, F.E., On a generalization of the Schauder fixed point theorem, Duke Math. J., 26(1959), 291–303.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]-
    CHOW, S.N., Remarks on one-dimensional delay-differential equations, J. Math. Anal. Appl., 41(1973), 426–429.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]-
    CHOW, S.N. and HALE, J.K., Strong limit-compact maps, Funkcial. Ekvac., 17(1974), 31–38.MathSciNetzbMATHGoogle Scholar
  6. [6]-
    CHOW, S.N. and YORKE, J.A., Lyapunov theory and perturbation of stable and asymptotically stable systems, J. Differential Eqs., 15(1974), 308–321.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]-
    COPPEL, W.A., Almost periodic properties of ordinary differential equations, Ann. Mat. Pura Appl., 76(1967), 27–49.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]-
    COPPEL, W.A., Dichotomies in Stability Theory, Lecture Notes in Mathematics 629, Springer-Verlag, 1978.Google Scholar
  9. [9]-
    FAVARD, J., Leçons sur les Fonctions Presque-périodiques, Gauthier-Villars, Paris, 1933.zbMATHGoogle Scholar
  10. [10]-
    FINK, A.M., Almost Periodic Differential Equations, Lecture Notes in Mathematics 377, Springer-Verlag, 1974.Google Scholar
  11. [11]-
    FINK, A.M. and FREDERICKSON, P.O., Ultimate boundedness does not imply almost periodicity, J. Differential Eqs., 9(1971), 280–284.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]-
    FRÉCHET, M., Les fonctions asymptotiquement presque-périodiques, Rev. Scientifique, 79(1941), 341–354.zbMATHGoogle Scholar
  13. [13]-
    HALANAY, A., Differential Equations; Stability, Oscillation, Time Lags, Academic Press, New York, 1966.zbMATHGoogle Scholar
  14. [14]-
    HALANAY, A. and YORKE, J.A., Some new results and problems in the theory of differential-delay equation, SIAM Review, 13(1971), 55–80.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]-
    HALE, J.K., Periodic and almost periodic solutions of functional-differential equations, Arch. Rational Mech. Anal., 15(1964), 289–304.ADSMathSciNetzbMATHGoogle Scholar
  16. [16]-
    HALE, J.K., Theory of Functional Differential Equations, Applied Math. Sciences, Vol. 3, 2nd ed., Springer-Verlag, 1977.Google Scholar
  17. [17]-
    HALE, J.K. and KATO, J., Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21(1978), 11–41.MathSciNetzbMATHGoogle Scholar
  18. [18]-
    HALE, J.K. and LOPES, O.F., Fixed point theorems and dissipative processes, J. Differential Eqs., 13(1973), 391–402.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]-
    HINO, Y., Stability and existence of almost periodic solutions of some functional differential equations, Tohoku Math. J., 28(1976), 389–409.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]-
    HINO, Y., Favard's separation theorem in functional differential equations with infinite retardations, Tohoku Math. J., 30(1978), 1–12.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]-
    JONES, G.S., Stability and asymptotic fixed point theory, Proc. Nat. Acad. Sci., U.S.A., 59(1965), 1262–1264.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]-
    KATO, J., Uniformly asymptotic stability and total stability, Tohoku Math. J., 22(1970), 254–269.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]-
    KATO, J., Favard's separation theorem in functional differential equations, Funkcial. Ekvac., 18(1975), 85–92.MathSciNetzbMATHGoogle Scholar
  24. [24]-
    KATO, J. and NAKAJIMA, F., On Sacker-Sell's theorem for a linear skew product flow, Tohoku Math. J., 28(1976), 79–88.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]-
    KATO, J. and SIBUYA, Y., Catastrophic deformation of a flow and non-existence of almost periodic solutions, J. Faculty of Sci., Univ. of Tokyo, Ser. IA, 24(1977), 267–280.MathSciNetzbMATHGoogle Scholar
  26. [26]-
    KATO, J. and YOSHIZAWA, T., A relationship between uniformly asymptotic stability and total stability, Funkcial. Ekvac., 12(1969), 233–238.MathSciNetzbMATHGoogle Scholar
  27. [27]-
    KATO, J. and YOSHIZAWA, T., Stability under the perturbation by a class of functions, Dynamical Systems, An International Symposium, Vol. 2, Academic Press, 1976, 217–222.Google Scholar
  28. [28]-
    LEVINSON, N., Transformation theory of nonlinear differential equations of second order, Ann. of Math., 45(1944), 723–737. Correction, Ann. of Math., 49(1948), 738.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]-
    MASSERA, J.L., The existence of periodic solutions of systems of differential equations, Duke Math. J., 17(1950), 457–475.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]-
    MILLER, R.K., Almost periodic differential equations as dynamical systems with applications to the existence of a.p. solutions, J. Differential Eqs., 1(1965), 337–345.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]-
    NAKAJIMA, F., Separation conditions and stability properties in almost periodic systems, Tohoku Math. J., 26(1974), 305–314.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]-
    OIAL, Z., Sur une équation différentielle presque-périodique sans solution presque-périodique, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys., 9(1961), 673–676.zbMATHGoogle Scholar
  33. [33]-
    REUTER, G.E.H., On certain non-linear differential equations with almost periodic solutions, J. London Math. Soc., 26(1951), 215–221.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]-
    SACKER, R.J. and SELL, G.R., Existence of dichotomies and invariant splittings for linear differential systems 1, J. Differential Eqs., 15(1974), 429–458.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]-
    SACKER, R.J. and SELL, G.R., Lifting properties in skew-product flow with applications to differential equations, Memoirs Amer. Math. Soc., 190(1977).Google Scholar
  36. [36]-
    SAWANO, K., Exponentially asymptotic stability for functional differential equations with infinite retardations, Tohoku Math. J., 31(1979).Google Scholar
  37. [37]-
    SEIFERT, G., Almost periodic solutions for almost periodic systems of ordinary differential equations, J. Differential Eqs., 2(1966), 305–319.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]-
    SELL, G.R., Nonautonomous differential equations and topological dynamics I, II, Trans. Amer. Math. Soc., 127(1967), 241–262, 263–283.MathSciNetzbMATHGoogle Scholar
  39. [39]-
    YOSHIZAWA, T., Extreme stability and almost periodic solutions of functional-differential equations, Arch. Rational Mech. Anal., 17(1964), 148–170.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]-
    YOSHIZAWA, T., Stability Theory by Liapunov's Second Method, The Mathematical Society of Japan, Tokyo, 1966.zbMATHGoogle Scholar
  41. [41]-
    YOSHIZAWA, T., Asymptotically almost periodic solutions of an almost periodic systems, Funkcial. Ekvac., 12(1969), 23–40.MathSciNetzbMATHGoogle Scholar
  42. [42]-
    YOSHIZAWA, T., Favard's condition in linear almost periodic systems, International Conference on Differential Equations, Academic Press, 1975, 787–799.Google Scholar
  43. [43]-
    YOSHIZAWA, T., Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Applied Math. Sciences, Vol. 14, Springer-Verlag, 1975.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Taro Yoshizawa

There are no affiliations available

Personalised recommendations