Non-singular structural stable flows on three-dimensional manifolds

  • M. C. de Oliveira
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 799)


Unstable Manifold Closed Orbit Hyperbolic Structure Local Cross Section Differentiable Dynamical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]-
    ASIMOV, D., Round handle and non-singular Morse-Smale flows, Ann. of Math., 102(1975).Google Scholar
  2. [2]-
    BOWEN, R. and WALTERS, P., Expansive one-parameter flows, J. Differential Eqns., 12(1972).Google Scholar
  3. [3]-
    DE OLIVEIRA, M., CO-density of structurally stable vector fields, Bull. Amer. Math. Soc., 82(1976).Google Scholar
  4. [4]-
    DE OLIVEIRA, M., Construction of stable flows: A density theorem, (to appear).Google Scholar
  5. [5]-
    MAZUR, B., Differential Topology from the point of view of Simple Homotopy Theory, IHES Publications Mathematiques, 15 (1963).Google Scholar
  6. [6]-
    MORGAN, J., Non-singular Morse-Smale flows on 3-Dimensional Manifolds, Topology, 18(1979).Google Scholar
  7. [7]-
    MUNKRES, J.R., Elementary Differential Topology, Annals of Mathematics Studies 54, Princeton University Press.Google Scholar
  8. [8]-
    NEWHOUSE, S., On hyperbolic limit sets, Trans. Amer. Math. Soc., 167(1972).Google Scholar
  9. [9]-
    NITECKI, Z., Differentiable Dynamics, MIT Press (1971).Google Scholar
  10. [10]-
    PALIS, J. and DE MELO, Introdução aos Sistemas Dinâmicos, IMPA Projeto Euclides, (1978).Google Scholar
  11. [11]-
    PALIS, J. and NEWHOUSE, S., Cycles and bifurcation theory, Asterisque, Soc. Math. France, 31(1976).Google Scholar
  12. [12]-
    PALIS, J. and SMALE, S., Structural Stability Theorems, Global Anal. Proc. Symp. Pure Math., (1970), 14, Amer. Math. Soc., Providence, R.I., (1970).Google Scholar
  13. [13]-
    ROBINSON, C., Structural stability for C1 flows, Proc. Symp. Dynamical Systems (1973/1974) Warwick, Springer Lecture Notes, 468(1975).Google Scholar
  14. [14]-
    SAD, P., Centralizadores de Campos Vetoriais, Doctoral Thesis, IMPA, (1977).Google Scholar
  15. [15]-
    SHUB, M. and SULLIVAN, D., Homology theory and dynamical systems, topology, 14(1975).Google Scholar
  16. [16]-
    SMALE, S., Differentiable dynamical systems, Bull. Amer. Math. Soc., 73(1967).Google Scholar
  17. [17]-
    SMALE, S., Structural stable systems are not dense, Amer. J. Math., 88(1966).Google Scholar
  18. [18]-
    SMALE, S., Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math., 74(1961).Google Scholar
  19. [19]-
    SMALE, S., Stability and isotopy in discrete dynamical systems, Proc. Symp. Dynamical Systems, Salvador, Brazil, Ed. M. Peixoto, Acad. Press (1973).Google Scholar
  20. [20]-
    WILLIAMS, R.F., The DA maps of Smale and Structural Stability, Global Anal. Proc. Symp. Pure Math., (1970), 14, Amer. Math. Soc., Providence, R.I., (1970).Google Scholar
  21. [21]-
    ZEEMAN, E.C., CO-density of stable diffeomorphisms and flows, Proc. Colloquium on smooth Dynamical Systems, Southampton, (1972). Southampton University reprint.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • M. C. de Oliveira

There are no affiliations available

Personalised recommendations