Advertisement

Volterra stieltjes-integral equations

  • Chaim Samuel Hönig
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 799)

Keywords

Banach Space Delay Differential Equation Regulate Solution Equivalent Property Open Mapping Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]-
    S.E.Arbex, Equações integrais de Volterra-Stieltjes com núcleos descontinuos, Doctor Thesis, Instituto de Matemática e Estatística da Universidade de São Paulo, 1976.Google Scholar
  2. [2]-
    C.W. Bitzer, Stieltjes-Volterra Integral equations, Illinois J.of Math 14(1970), 434–451.MathSciNetzbMATHGoogle Scholar
  3. [3]-
    J.B.F.Gomes, in preparation.Google Scholar
  4. [4]-
    C.S. Hönig, Volterra Stieltjes-integral equations, Mathematics Studies 16, North-Holland Publishing Comp., Amsterdam, 1975.zbMATHGoogle Scholar
  5. [5]-
    C.S. Hönig, Volterra-Stieltjes integral equations with linear constraints and discontinuous solutions, Bull. Amer. Math. Soc., 81(1975), 593–598.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]-
    C.S.Hönig, The Dirichlet and substitution formulas for Riemann-Stieltjes integrals in Banach spaces, in "Functional Analysis" edited by Djairo Guedes de Figueiredo, Lectures Notes in Pure and Applied Mathematics, vol. 18, p. 135–189, Marcel Dekker, 1976.Google Scholar
  7. [7]-
    C.S.Hönig, Fredholm Stieltjes-integral equations, I, in publication.Google Scholar
  8. [8]-
    C.S.Hönig, The abstract Riemann-Stieltjes integràl and its applications to linear differential equations with generalized boundary conditions, Notas do Instituto de Matemática e Estatística da Universidade de São Paulo, Série Matemática no 1, 1973.Google Scholar
  9. [9]-
    C.S.Hönig, Análise Funcional e Aplicações, 2 vol., Instituto de Matemática e Estatística da Universidade de São Paulo, 1970.Google Scholar
  10. [10]-
    C.S.Hönig, The resolvent of a linear Stieltjes integro-differential equation, to appear.Google Scholar
  11. [11]-
    C.S.Hönig, in preparation.Google Scholar
  12. [12]-
    J.Hale, Theory of Functional Differential Equations, Applied Mathematical Sciences 3, Springer-Verlag, 1977.Google Scholar
  13. [13]-
    D.B. Hinton, A Stieltjes-Volterra integral equations theory, Canada J.Math., 18 (1966), 314–331.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]-
    J.S. MacNerney, An integration-by-parts formula, Bull. Amer. Math. Soc., 69, (1963), 803–805.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]-
    A.P.Robertson & W.J.Robertson, Topological Vector Spaces, Cambridge University Press, 1964.Google Scholar
  16. [16]-
    C.S.Cardassi, Dependência diferenciável das soluções de equações integro-diferenciais em espaços de Banach, Master Thesis, Instituto de Matemática e Estatística da Universidade de São Paulo, 1975.Google Scholar
  17. [17]-
    St. Schwabik, On Volterra-Stieltjes integral equations, Čas. pro pěst. mat., 99, (1974), 255–278.MathSciNetzbMATHGoogle Scholar
  18. [18]-
    St. Schwabik, Note on Volterra-Stieltjes integral equations, Čas. pro pěst.mat., 102(1977), 275–279.MathSciNetzbMATHGoogle Scholar
  19. [19]-
    J.C.Prandini, Funções de semi-variação limitada de mais de uma variável, Master thesis, Instituto de Matemática e Estatística da Universidade de São Paulo, 1978.Google Scholar
  20. [20]-
    C.S.Hönig, Compactifying subspaces, in preparation.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Chaim Samuel Hönig

There are no affiliations available

Personalised recommendations