Advertisement

A compactness theorem for integral operators and applications

  • M. Cecchi
  • M. Marini
  • P. L. Zezza
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 799)

Keywords

Linear Boundary Fundamental Matrix Compactness Theorem Continuous Linear Operator Equivalence Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]-
    AVRAMESCU, C., Sur l'éxistence des solutions convergentes des systèmes d'équations différentielles non linéaires, Ann. Mat. Pura Appl. 4(1969).Google Scholar
  2. [2]-
    CECCHI, M., MARINI, M. and ZEZZA, P.L., Linear boundary value problems for systems of ordinary differential equations on non-compact intervals, Ann. Mat. Pura Appl., (to appear).Google Scholar
  3. [3]-
    CECCHI, M., MARINI, M. and ZEZZA, P.L., Un metodo astratto per problemi ai limiti non lineari su intervalli non comapatti, Comunicazione a Equadiff 78, Firenze, 24–30 Maggio 1978, Conti, Sestini, Villari eds.Google Scholar
  4. [4]-
    CECCHI, M., MARINI, M. and ZEZZA, P.L., Linear boundary value problems for systems of ordinary differential equations on non-compact intervals. Part II: Stability and bounded perturbations, Ann. Mat. Pura Appl., (to appear).Google Scholar
  5. [5]-
    CESARI, L., Functional analysis, non linear differential equations and the alternative method, in Nonlinear Funct. Analysis and Differential Eqns., L. Cesari, R. Kannan, J. D. Schuur eds., Dekker, New York, (1977), 1–197.Google Scholar
  6. [6]-
    CORDUNEANU, C., Integral Equations and Stability of Feedback Systems, Math. Sc. Eng. 104, Ac. Press, New York, (1973).zbMATHGoogle Scholar
  7. [7]-
    MAWHIN, J., Topological degree methods in nonlinear boundary value problems, Ref. conf. series in math. (40), Amer. Math. Soc., Providence, R.I., (1979).Google Scholar
  8. [8]-
    KARTSATOS, A.G., The Leray-Schauder Theorem and the existence of solutions to boundary value problems on infinite intervals, Ind. Un. Math. J., 23, 11(1974).Google Scholar
  9. [9]-
    ZEZZA, P.L., An equivalence theorem for non linear operator equations and an extension of Leray-Sachauder's continuation theorem, Boll. U. M. I. (5) 15-A (1978).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • M. Cecchi
  • M. Marini
  • P. L. Zezza

There are no affiliations available

Personalised recommendations