Advertisement

Stability of nonconservative linear systems

  • J. Carr
  • M. Z. M. Malhardeen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 799)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]-
    WALKER, J.A. and INFANTE, E.F., A perturbation approach to the stability of undamped linear elastic systems subjected to follower forces, J. Math. Anal. Appl., 63(1978), 654–677.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]-
    CARR, J. and MALHARDEEN, M.Z.M., Beck's Problem, SIAM J. Appl. Math., 37(1979) (To appear).Google Scholar
  3. [3]-
    REED, M. and SIMON, B., Methods of Modern Mathematical Physics, Vol. I: Functional Analysis, Academic Press, New York, (1972).zbMATHGoogle Scholar
  4. [4]-
    GOHBERG, I.C. and KREIN, M.G., Introduction to the Theory of Linear Non-self-adjoint Operators, Translations of Mathematical Monographs, Vol. 18, A.M.S., (1969).Google Scholar
  5. [5]-
    MIHAILOV, V.P., Riesz bases in L2[0,1], Soviet Math., 3(1962), 851–855.MathSciNetGoogle Scholar
  6. [6]-
    DUNFORD, N. and SCHWARTZ, J., Linear Operators, Part III, Wiley-Interscience, New York, (1971).zbMATHGoogle Scholar
  7. [7]-
    CLARK, C., On relatively bounded perturbations of ordinary differential operators, Pacific J. Math., 25(1968), 59–70.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]-
    KATO, T., Similarity for sequences of projections, Bull. Amer. Math. Soc., 73(1967), 904–905.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]-
    GOLDBERG, S., Unbounded Linear Operators, McGraw-Hill Book Company, New York, (1966).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • J. Carr
  • M. Z. M. Malhardeen

There are no affiliations available

Personalised recommendations