Stability of nonconservative linear systems

  • J. Carr
  • M. Z. M. Malhardeen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 799)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]-
    WALKER, J.A. and INFANTE, E.F., A perturbation approach to the stability of undamped linear elastic systems subjected to follower forces, J. Math. Anal. Appl., 63(1978), 654–677.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]-
    CARR, J. and MALHARDEEN, M.Z.M., Beck's Problem, SIAM J. Appl. Math., 37(1979) (To appear).Google Scholar
  3. [3]-
    REED, M. and SIMON, B., Methods of Modern Mathematical Physics, Vol. I: Functional Analysis, Academic Press, New York, (1972).zbMATHGoogle Scholar
  4. [4]-
    GOHBERG, I.C. and KREIN, M.G., Introduction to the Theory of Linear Non-self-adjoint Operators, Translations of Mathematical Monographs, Vol. 18, A.M.S., (1969).Google Scholar
  5. [5]-
    MIHAILOV, V.P., Riesz bases in L2[0,1], Soviet Math., 3(1962), 851–855.MathSciNetGoogle Scholar
  6. [6]-
    DUNFORD, N. and SCHWARTZ, J., Linear Operators, Part III, Wiley-Interscience, New York, (1971).zbMATHGoogle Scholar
  7. [7]-
    CLARK, C., On relatively bounded perturbations of ordinary differential operators, Pacific J. Math., 25(1968), 59–70.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]-
    KATO, T., Similarity for sequences of projections, Bull. Amer. Math. Soc., 73(1967), 904–905.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]-
    GOLDBERG, S., Unbounded Linear Operators, McGraw-Hill Book Company, New York, (1966).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • J. Carr
  • M. Z. M. Malhardeen

There are no affiliations available

Personalised recommendations