Advertisement

Domains of holomorphy in (DFC)-spaces

  • Jorge Mujica
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 843)

Keywords

Compact Subset Approximation Property Convex Space Plurisubharmonic Function Null Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bremermann, H., Über die Äquivalenz der pseudokonvexen Gebiete und der Holomorphiegebiete im Raum von n Komplexen Veränderlichen. Math. Ann. 128 (1954), 63–91.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Cartan, H.-Thullen, P., Regularitäts — und Konvergenzbereiche Math. Ann. 106 (1932), 617–647.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Colombeau, J.F., Infinite dimensional C mappings with a given sequence of derivatives at a given point. J. Math. Anal. Appl. 71 (1979), 95–104.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Colombeau, J.F.-Mujica, J., The Levi problem in nuclear Silva spaces. Ark. Mat. (to appear)Google Scholar
  5. [5]
    Dineen, S., Surjective limits of locally convex spaces and their applications to infinite dimensional holomorphy. Bull. Soc. Math. France 103 (1975), 441–509.MathSciNetzbMATHGoogle Scholar
  6. [6]
    Dineen, S., Holomorphic functions on strong duals of Fréchet-Montel spaces. In: Infinite Dimensional Holomorphy and Applications, edited by M.C. Matos, pp. 147–166. North Holland, Amsterdam, 1977.CrossRefGoogle Scholar
  7. [7]
    Dineen, S.-Noverraz, Ph.-Schottenloher, M., Le problème de Levi dans certains espaces vectoriels topologiques localement convexes. Bull. Soc. Math. France 104 (1976), 87–97.MathSciNetzbMATHGoogle Scholar
  8. [8]
    Grauert, H.-Fritzsche, K., Several Complex Variables, Springer, New York, 1976.CrossRefzbMATHGoogle Scholar
  9. [9]
    Gruman, L., The Levi problem in certain infinite dimensional vector spaces. Illinois J. Math. 18 (1974), 20–26.MathSciNetzbMATHGoogle Scholar
  10. [10]
    Gruman, L.-Kiselman, C.O., Le problème de Levi dans les espaces de Banach à base. C.R. Acad. Sc. Paris 274 (1972), Série A, 1296–1298.MathSciNetzbMATHGoogle Scholar
  11. [11]
    Hirschowitz, A., Prolongement analytique en dimension infinie. Ann. Inst. Fourier (Grenoble) 22 (1972), 255–292.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Hollstein, R., (DCF)-Räume und lokalkonvexe Tensorprodukte. Arch. Math. (Basel) 29 (1977), 524–531.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Hollstein, R., Tensorprodukte von stetigen linearen Abbildungen in (F)-und (DCF)-Räumen. J. reine angew. Math. 301 (1978), 191–204.MathSciNetzbMATHGoogle Scholar
  14. [14]
    Hörmander, L., An Introduction to Complex Analysis in Several Variables. North-Holland, Amsterdam, 1973.zbMATHGoogle Scholar
  15. [15]
    Horváth, J., Topological Vector Spaces and Distributions, Vol.I. Addison-Wesley, Reading, Massachusetts, 1966.Google Scholar
  16. [16]
    Josefson, B., A counterexample in the Levi problem. In: Proceedings on Infinite Dimensional Holomorphy, edited by T.L. Hayden and T.J. Suffridge, pp. 168–177. Lecture Notes in Mathematics 364. Srpinger, Berlin, 1974.CrossRefGoogle Scholar
  17. [17]
    Kelley, J.L., General Topology. Van Nostrand, Princenton, New Jersey, 1955.zbMATHGoogle Scholar
  18. [18]
    Köthe, G., Topological Vector Spaces I. Springer, Berlin, 1969.zbMATHGoogle Scholar
  19. [19]
    Levi, E.E., Sulle ipersuperfici dello spazio a 4 dimensioni che possono essere frontiera del campo di esistenza di una funzioni analitica di due variabili complesse. Ann. Math. Pura Appl. (3) 18 (1911), 69–79.CrossRefzbMATHGoogle Scholar
  20. [20]
    Ligocka, E., A local factorization of analytic functions and its applications. Studia Math. 47 (1973), 239–252.MathSciNetzbMATHGoogle Scholar
  21. [21]
    Mujica, J., The Oka-Weil theorem in locally convex spaces with the approximation property. Séminaire Paul Krée 1977–1978, exposé no 3, Institut Henri Poincaré, Paris, 1979.zbMATHGoogle Scholar
  22. [22]
    Nachbin, L. Topology on Spaces of Holomorphic Mappings, Springer, Berlin, 1969.CrossRefzbMATHGoogle Scholar
  23. [23]
    Norguet, F., Sur les domaines d'holomorphie des fonctions uniformes de plusieurs variables complexes. Bull. Soc. Math. France 82 (1954), 137–159.MathSciNetzbMATHGoogle Scholar
  24. [24]
    Noverraz, Ph., Pseudo-Convexité, Convexité Polynomiale et Domaines d'Holomorphie en Dimension Infinie. North-Holland, Amsterdam, 1973.zbMATHGoogle Scholar
  25. [25]
    Noverraz, Ph., Sur le théorème de Cartan-Thullen-Oka en dimension infinie. In: Séminaire Pierre Lelong Année 1971–1972, pp. 59–68. Lecture Notes in Mathematics 332. Springer, Berlin, 1973.Google Scholar
  26. [26]
    Noverraz, Ph., Approximation of holomorphic or plurisubharmonic functions in certain Banach spaces. In: Proceedings on Infinite Dimensional Holomorphy, edited by T.L. Hayden and T.J. Suffridge, pp. 178–185. Lecture Notes in Mathematics 364. Springer, Berlin, 1974.CrossRefGoogle Scholar
  27. [27]
    Noverraz, Ph., Pseudo-convexité et base de Schauder dans les elc. In: Séminaire Pierre Lelong Année 1973–1974, pp. 63–82. Lecture Notes in Mathematics 474. Springer, Berlin, 1975.CrossRefGoogle Scholar
  28. [28]
    Oka, K., Sur les fonctions analytiques de plusieurs variables complexes. IX. Domaines finis sans point critique intérieur. Japan J. Math. 23 (1953), 97–155.MathSciNetzbMATHGoogle Scholar
  29. [29]
    Pomes, R., Solution du problème de Levi dans les espaces de Silva à base. C.R. Acad. Sc. Paris 278 (1974), Série A, 707–710.MathSciNetzbMATHGoogle Scholar
  30. [30]
    Schottenloher, M., Das Leviproblem in unendlichdimensionalen Räumen mit Schauderzerlegung. Habilitationsschrift, Universität München, 1974.Google Scholar
  31. [31]
    Schottenloher, M., The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition. Ann. Inst. Fourier (Grenoble) 26 (1976), 207–237.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    Schottenloher, M., Polynomial approximation on compact sets. In: Infinite Dimensional Holomorphy and Applications, edited by M.C. Matos, pp. 379–391. North-Holland, Amsterdam, 1977.CrossRefGoogle Scholar
  33. [33]
    Schwartz, L., Produits tensoriels topologiques d'espaces vectoriels topologiques. Espaces vectoriels topologiques nucléaires. Applications. Séminaire Schwartz 1953–1954. Faculté des Sciences de Paris, 1954.Google Scholar
  34. [34]
    Schwartz, L., Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures. Tata Institute of Fundamental Research, Bombay, and Oxford University Press, London, 1973.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Jorge Mujica
    • 1
  1. 1.Instituto de MatemáticaUniversidade Estadual de CampinasCampinas, SPBrasil

Personalised recommendations