Advertisement

On the topology of compact complex surfaces

  • Ludger Kaup
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 843)

Keywords

Betti Number Homotopy Type Homotopy Classification Compact Complex Surface Nonsingular Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ar]
    Arnold, V.I., Normal Forms of Functions in Neighbourhoods of Degenerate Critical Points. Usp. Math. Nauk, Russian Math. Surveys 29:2, 10–50 (1974).CrossRefGoogle Scholar
  2. [Ba]
    Barthel, G., Topologie normaler gewichtet homogener Flächen. In P. Holm (editor): Real and Complex Singularities, Oslo 1976, Sijthoff & Noordhoff Intern. Publ. Groningen-Leyden; 99–126 (1977).Google Scholar
  3. [Ba2]
    Barthel, G., Homöomorphieklassifikation normaler gewichtet homogener Flächen (in preparation).Google Scholar
  4. [Ba3]
    Barthel, G., Zur Topologie normaler kubischer Flächen mit C*-aktion. Preprint.Google Scholar
  5. [BaKa]
    Barthel, G., Kaup L., Homotopieklassifikation einfach zusammenhängender normaler kompakter komplexer Flächen. Math. Ann. 212, 113–144 (1974).MathSciNetCrossRefGoogle Scholar
  6. [Gi]
    Giesecke, B., Simpliziale Zerlegung abzählbarer analytischer Räume. Math. Zeitschr. 83, 177–213 (1964).MathSciNetCrossRefzbMATHGoogle Scholar
  7. [GrHa]
    Griffiths, P., Harris, J., Principles of Algebraic Geometry. Wiley-Interscience, (1978).Google Scholar
  8. [Ka]
    Kaup, L., Poincaré-Dualität für Räume mit Normalisierung. Ann. Sc. Norm. Sup. Pisa XXVI, 1–31 (1972).MathSciNetzbMATHGoogle Scholar
  9. [KaBa]
    Kaup, L., Barthel, G., On the Homotopy Type of Weighted Homogeneous Normal Complex Surfaces, in "Several Complex Variables", Proceedings of Symposia in Pure Mathematics 30:1, 263–271 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  10. [La]
    Laufer, H., Normal two-dimensional Singularities. Ann. of Math. Studies 71, Princeton Univ. Press (1971).Google Scholar
  11. [Ma]
    Mandelbaum, R., On the Topology of Elliptic Surfaces. Preprint.Google Scholar
  12. [MaMo]
    Mandelbaum, R., Moishezon, B., On the Topological Structure of Nonsingular Algebraic Surfaces in CP3. Topology 15, 23–40 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  13. [MaMo2]
    Mandelbaum, R., Moishezon, B., On the Topology of Simplyconnected Algebraic Surfaces. TopologyGoogle Scholar
  14. [MiHu]
    Milnor, J., Husemoller, D., Symmetric Bilinear Forms. Erg. Math. 73, Springer Verlag, Berlin-Heidelberg-New York (1973).CrossRefzbMATHGoogle Scholar
  15. [Mo]
    Moishezon, B., Complex Surfaces and Connected Sums of Complex Projective Planes. LNM 603 Springer (1977).Google Scholar
  16. [Or]
    Orlik, P., Weighted Homogeneous Polynomials and Fundamental Groups. Topology 9, 267–273 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  17. [OrWa]
    Orlik, P., Wagreich, P., Isolated Singularities of Algebraic Surfaces with C*-Action. Ann. of Math. 93, 205–228 (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Ro]
    Rohlin, V.A., A New Result in the Theory of 4-dimensional Manifolds (russian). Dokl. Akad. Nauk. SSSR 84, 221–224 (1952).MathSciNetGoogle Scholar
  19. [Sm]
    Smale, S., On the Structure of Manifolds. Amer. J. of Math. 84, 387–399 (1962).MathSciNetCrossRefzbMATHGoogle Scholar
  20. [Te]
    Teissier, B., Cycles évanescents, sections planes et conditions de Whitney. In: Singularités à Cargèse, Astérisque 7/8, 285–362 (1973).Google Scholar
  21. [Ue]
    Ueno, K., Introduction to Classification Theory of Algebraic Varieties and Compact Complex Spaces. In H. Popp (editor): Classification of Algebraic Varieties and Compact Complex Manifolds, LNM 412, Springer (1974).Google Scholar
  22. [Wa]
    Wall, C.T.C., On Simply-connected 4-Manifolds, J. London Math. Soc. 39, 141–149 (1964).MathSciNetCrossRefzbMATHGoogle Scholar
  23. [Wh]
    Whitehead, J.H.C., On Simply-connected 4-dimensional Polyhedra, Comm. Math. Helv. 22, 48–92 (1949).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Ludger Kaup
    • 1
  1. 1.Fakultät für MathematikUniversität KonstanzKonstanz

Personalised recommendations