C-functions on locally convex and on bornological vector spaces

  • Jean-François Colombeau
  • Reinhold Meise
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 843)


Open Subset Compact Subset Topological Hausdorff Space Topological Identity Topological Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aron, R., Compact polynomials and compact differentiable mappings between Banach spaces, in "Seminaire Pierre Lelong (Analyse) Année 1974/75", Springer Lectures Notes Math. 524 (1976), p. 213–222.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Aron, R., Schottenloher, M., Compact holomorphic mappings on Banach spaces and the approximation property, J. Functional Analysis 21 (1976), 7–30.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Bierstedt, K.-D., Meise, R., Lokalkonvexe Unterräume in topologischen Vektorräumen und das c-Produkt, manuscripta math. 8 (1973), 143–172.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Blasco, J.L., Two problems on kR-spaces, Acta Math. Sci. Hung. 32 (1978), 27–30.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Gordón Bombal, F., Llavona González J.L., La propriedad de aproximación en espacios de funciones diferenciables, Revista Acad. Ci. Madrid 70 (1976), 727–741.Google Scholar
  6. [6]
    Colombeau, J.F., Sur les applications differentiables et analytiques au sens de J. Sebastião e Silva, to appear in Port. Math.Google Scholar
  7. [7]
    Colombeau, J.F., Spaces of C-mappings in infinitely many dimensions and applications, preprint Bordeaux 1977.Google Scholar
  8. [8]
    Colombeau, J.F., Meise, R., Perrot, B., A density result in spaces of Silva holomorphic mappings, Pacific J. Math., 84 (1979), 35–42.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Gramsch, B., Zum Einbettungssatz von Rellich bei Sobolevräumen, Math. Z. 106, 81–87 (1968).MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Hogbe-Nlend, H., Bornologies and functional analysis, North-Holland Mathematics Studies 26 (1977).Google Scholar
  11. [11]
    Horváth, J., Topological vector spaces and distributions I, Reading, Mass., Addison Wesley 1965.Google Scholar
  12. [12]
    Keller, H.H., Differential calculus in locally convex spaces, Springer Lecture Notes in Math. 417 (1974).Google Scholar
  13. [13]
    Meise, R., Spaces of differentiable functions and the approximation property, p. 263–307 in "Approximation Theory and Functional Analysis" J.B. Prolla (Editor), North Holland Mathematics Studies (1979).Google Scholar
  14. [14]
    Meise, R., Nicht-Nuklearität von Räumen beliebig oft differenzierbarer Funktionen, to appear in Arch. Math. (1980).Google Scholar
  15. [15]
    Nachbin, L., Sur la densité des sous-algèbres polynomiales d'applications continument différentiables, in Seminaire P. Lelong, H. Skoda (Analyse) Année 1976/77, Springer Lect. Math. 694, 196–203.Google Scholar
  16. [16]
    Nachbin, L., On the closure of modules of continuously differentiable mappings, preprint, to appear in Rendiconti del Seminário Matemático dell'Università di Padova 59 (1979).Google Scholar
  17. [17]
    Paques, O.W., The approximation property for certain spaces of holomorphic mappings, p. 351–370 in "Approximation Theory and Functional Analysis", J.B. Prolla (Editor), North Holland Mathematics Studies (1979).Google Scholar
  18. [18]
    Pietsch, A., Nuclear locally convex spaces, Ergebnisse der Math. 66, Springer (1972).Google Scholar
  19. [19]
    Prolla, J.B., Guerreiro, C.S., An extension of Nachbin's theorem to differentiable functions on Banach spaces with the approximation property, Ark. Mat. 14, 251–258 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Schaefer, H.H., Topological Vector Spaces, Springer 1970.Google Scholar
  21. [21]
    Schwartz, L., Théorie des distributions à valeurs vectorielles I, Ann. Inst. Fourier 7, 1–142 (1957).MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Sebastião e Silva, J., Le calcul différentiel et intégral dans les espaces localement convexes réels ou complexes, Att. Acad. Naz. Lincei 20, 743–750 (1956) and 21, 40–46 (1956).zbMATHGoogle Scholar
  23. [23]
    Sebastião e Silva, J., Les espaces à bornés et la notion de fonction différentiable, p. 57–61 in "Colloque d'Analyse Fonctionelle CBRM" (1961).Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Jean-François Colombeau
    • 1
    • 2
  • Reinhold Meise
    • 1
    • 2
  1. 1.U.E.R. de Mathématiques et d'Informatique Université de Bordeaux ITalenceFrance
  2. 2.Mathematisches Institut der UniversitätDüsseldorfFederal Republic of Germany

Personalised recommendations