Advertisement

The Levi problem and the radius of convergence of holomorphic functions on metric vector spaces

  • Aboubakr Bayoumi
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 843)

Keywords

Banach Space Vector Space Holomorphic Function Normed Space Topological Vector Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aron, R., Entire functions of unbounded type on Banach spaces. Boll. Un. Mat. Ital. (4)9, 28–31 (1974).MathSciNetzbMATHGoogle Scholar
  2. [2]
    Bayoumi, A., Bounding subsets of some metric vector spaces. To appear in Arkiv for Mat. (1980).Google Scholar
  3. [3]
    Coeureé, G., Sur le rayon de bornologie des fonctions holomorphes. Sém. P. Lelong, Lecture Notes in Mathematics 578, 183–194. Springer-Verlag. 1977.Google Scholar
  4. [4]
    Dineen, S., Unbounded holomorphic functions on a Banach space. J. London Math. Soc. (24, 461–465 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Gruman, L., Kiselman, C.O., Le problème de Levi dans les espaces de Banach à base. C.R. Acad. Sci. Paris, A 274, 1296–1299 (1972).MathSciNetzbMATHGoogle Scholar
  6. [6]
    Hörmander, L., An introduction to Complex Analysis in Several Variables. Princeton, Van Nostrand (1966).zbMATHGoogle Scholar
  7. [7]
    Josefson, B., A counterexample to the Levi problem. In Proceedings on Infinite Dimensional Holomorphy. Lecture Notes in Mathematics 364, 168–177 (Springer 1974).MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Kiselman, C.O., On the radius of convergence of an entire function in a normed space. Ann. Polon. Math. 33, 39–55 (1976).MathSciNetzbMATHGoogle Scholar
  9. [9]
    Kiselman, C.O., Geometric aspects of the theory of bounds for entire functions in normed spaces. In Infinite Dimensional Holomorphy and Applications. Ed. M.C. Matos, North-Holland, Amsterdam (1977).Google Scholar
  10. [10]
    Kiselman, C.O., Constructions de fonctions entières à rayon de convergence donné. Lecture Notes in Mathematics 578, 246–253. Springer-Verlag (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Lelong, P., Fonctions plurisousharmoniques dans les espaces vectoriels topologiques. Lecture Notes in Mathematics 71, 167–190. Springer-Verlag 1968.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Nachbin, L., Topology on Spaces of Holomorphic Mappings. Springer-Verlag, Berlin, Heidelberg, New York (1969).CrossRefzbMATHGoogle Scholar
  13. [13]
    Noverraz, P., Pseudoconvexité, convexité polynomiale et domaines d'holomorphie en dimension infinie. Amsterdam: North-Holland (1973).zbMATHGoogle Scholar
  14. [14]
    Rolewicz, S., Metric Linear Spaces. Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (1972).Google Scholar
  15. [15]
    Schottenloher, M., Richness of the class of holomorphic functions on an infinite dimensional space. Functional Analysis, Results and Surveys. Conf. in Paderborn (1976). Amsterdam: North-Holland.Google Scholar
  16. [16]
    Schottenloher, M., Holomorphe Funktionen auf Gebieten über Banachräumen zu vorgegebenen Konvergenzradien. Manuscripta Math. 21, 315–327 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Schottenloher, M., The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition. Ann. Inst. Fourier, Grenoble 26, 207–237 (1976).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Aboubakr Bayoumi
    • 1
  1. 1.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations