Advertisement

The subalgebra lattice of a supersolvable lie algebra

  • Vicente R. Varea
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1373)

1980 Mathematics Subject Classification

17B50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Amayo, R. K.: Quasi-ideals of Lie algebras, Proc. London Math. Soc.33 (1976), 28–36.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Amayo, R. K., Schwarz, J.: Modularity in Lie algebras, Hiroshima Math. J. 10 (1980),311–322.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Barnes, D. W.: On Cartan subalgebras of Lie algebras, Math. Z. 101 (1967), 350–355.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Barnes, D. W.: Lattice isomorphisms of Lie algebras, J. Austral. Math. Soc. 4 (1964), 470–475.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Barnes, D. W.: Lattice automorphisms of semisimple Lie algebras, J. Austral. Math. Soc. 16 (1973), 43–45.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Benkart, G. M., Isaacs, I. M., Osborn, J. M.: Lie algebras with self-centralizing adnilpotent elements. J. Algebra 57 (1979), 279–309.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Benkart, G. M., Osborn, J. M.: Rank one Lie algebras. Annals of Math. 119 (1984), 437–463.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Gein, A.G.: Semimodular Lie algebras, Sibirsk. Mat. Z. 17 (1976), 243–248 (translated in Siberian Math. J. 17 (1976), 243–248.MathSciNetzbMATHGoogle Scholar
  9. [9]
    Gein, A. G.: Supersolvable Lie algebras and the Dedekind law in the lattice of subalgebras. Ural. Gos. Univ. Mat. Zap. 10 (1977), 33–42.MathSciNetzbMATHGoogle Scholar
  10. [10]
    Gein, A.G.: Modular subalgebras and projections of locally finite dimensional Lie algebras of characteristic zero, Ural. Gos. Univ. Mat. Zap. 13 (1983), 39–51.MathSciNetGoogle Scholar
  11. [11]
    Gein, A. G., Muhin, Complements to subalgebras of Lie algebras, Ural. Gos. Univ. Mat. Zap. 12 (1980), 2, 24–48.MathSciNetGoogle Scholar
  12. [12]
    Goto, M.: Lattices of subalgebras of real Lie algebras, J. Algebra 11 (1969), 6–24.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Jacobson, N.: Lie Algebras, Wiley-Interscience, New York (1962).zbMATHGoogle Scholar
  14. [14]
    Kolman, B.: Semi-modular Lie algebras, J. Sci. Hiroshima Univ. Ser. A-1 29 (1965), 149–163.MathSciNetzbMATHGoogle Scholar
  15. [15]
    Kolman, B.: Relatively Complemented Lie algebras, J. Sci. Hiroshima Univ. Ser. A-1 31 (1967), 1–11.MathSciNetzbMATHGoogle Scholar
  16. [16]
    Lashi, A. A.: On Lie algebras with modular lattices of subalgebras, J. Algebra 99 (1986), 80–88.MathSciNetCrossRefGoogle Scholar
  17. [17]
    Premet, A. A.: Toroidal Cartan subalgebras of Lie p-algebras, and anisotropic Lie algebras of positive characteristic, Vestsi Akad. Navuk BSSR Ser. Fiz. Mat. Navuk, 1 (1986), 9–14.MathSciNetzbMATHGoogle Scholar
  18. [18]
    Premet, A.A.: Lie algebras without strong degeneration, Math. USSR Sb. 57 (1987), 151–163.CrossRefzbMATHGoogle Scholar
  19. [19]
    Towers, D. A.: Lattice isomorphisms of Lie algebras, Math. Proc. Phil. Soc. 89 (1981), 285–292; corrigenda, 95, (1984), 511–512.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Towers, D. A.: Lattice automorphisms of Lie algebras, Arch. Math. 46 (1986), 39–43.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Towers, D. A.: Semi-modular subalgebras of a Lie algebra, J. Algebra 103 (1986), 202–207.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Varea, V. R.: Lie algebras whose maximal subalgebras are modular, Proc. of the Royal Soc. of Edinburgh, 94 A (1983), 9–13.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Varea, V. R.: Lie algebras none of whose Engel subalgebras are in intermediate position, Comm. in Algebra, 15 (12), (1987), 2529–2543.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Vicente R. Varea
    • 1
  1. 1.University of ZaragozaZaragozaSpain

Personalised recommendations