Advertisement

Forms of restricted simple lie algebras

  • Shirlei Serconek
  • Robert Lee Wilson
Conference paper
  • 281 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1373)

1980 AMS subject classification (1985 revision)

17B50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [As-69]
    H. Allen and M. Sweedler, A theory of linear descent based upon Hopf algebraic techniques, J. Algebra 12 (1969), 242–294.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Bar-63]
    R. T. Barnes, On derivation algebras and Lie algebras of prime characteristic. Ph.D. thesis, Yale University, 1963.Google Scholar
  3. [Bar-66]
    —, On splitting fields for certain Lie algebras of prime characteristic, Proc. Amer. Math. Soc. 17 (1966), 930–935.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BW-88]
    R. E. Block and R. L. Wilson, Classification of the restricted simple Lie algebras, J. Algebra 114 (1988), 115–259.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Jac-39]
    N. Jacobson, Cayley numbers and simple Lie algebras of type G, Duke Math. J. 5 (1939), 775–783.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Jac-41]
    —, Classes of restricted Lie algebras of characteristic p. I, Amer. J. Math. 63 (1941), 481–515.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Jac-43]
    —, Classes of restricted Lie algebras of characteristic p. II, Duke Math. J. 10 (1943), 107–121.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Jac-62]
    —, Lie algebras, Interscience Tracts in Pure and Applied Math. 10, Interscience, New York, 1962.zbMATHGoogle Scholar
  9. [Jac-66]
    —, Forms of algebras, Yeshiva Sci. Confs. 1 (1966), 41–71.Google Scholar
  10. [KS-66]
    A. I. Kostrikin and I. R. Šafarevič, Cartan pseudogroups and Lie p-algebras (Russian), Dokl. Akad. Nauk SSSR 168(1966), 740–742; English transl., Soviet Math. Dokl. 7 (1966), 715–718.MathSciNetGoogle Scholar
  11. [Mat-86]
    H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge, 1986.zbMATHGoogle Scholar
  12. [Sel-67]
    G. B. Seligman, Modular Lie algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete 40, Springer-Verlag, New York, 1967.CrossRefzbMATHGoogle Scholar
  13. [Ser-80]
    S. Serconek, Forms of restricted simple Lie algebras of Cartan type. Ph. D. thesis, Rutgers University, 1980.Google Scholar
  14. [SW-pre]
    S. Serconek and R. L. Wilson, Classification of forms of restricted simple Lie algebras of Cartan type, Comm. Algebra, to appear.Google Scholar
  15. [Ser-68]
    J. P. Serre, Corps Locaux, Hermann, Paris, 1968.zbMATHGoogle Scholar
  16. [SF-88]
    H. Strade and R. Farnsteiner, Modular Lie algebras and their representations, Marcel Dekker, New York, 1988.zbMATHGoogle Scholar
  17. [Swe-68]
    M. E. Sweedler, Structure of inseparable extensions, Annals of Math. 87 (1968), 401–410.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Tom-53]
    M. L. Tomber, Lie algebras of type F, Proc. Amer. Math. Soc. 4 (1953), 759–768.MathSciNetzbMATHGoogle Scholar
  19. [Wat-71]
    W. C. Waterhouse, Automorphism schemes and forms of Witt Lie algebras, J. Algebra 17 (1971), 34–40.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [Wei-65]
    M. Weisfeld, Purely inseparable extensions and higher derivations, Trans. Amer. Math. Soc. 116 (1965), 435–450.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Shirlei Serconek
    • 1
  • Robert Lee Wilson
    • 1
  1. 1.Department of MathematicasRutgers UniversityNew BrunswickUSA

Personalised recommendations