Advertisement

On lie algebras with a subalgebra of codimension one

  • Alberto Elduque
Conference paper
  • 274 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1373)

1980 Mathematics Subject Classification

17B50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.K. Amayo, Quasiideals of Lie algebras II. Proc. London Math. Soc. 33 (1976), 37–64.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    G.M. Benkart, I.M. Isaacs and J.M. Osborn, Lie algebras with self-centralizing ad-nilpotent elements. J. Algebra 57 (1979), 279–309.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    G.M. Benkart, I.M. Isaacs and J.M. Osborn, Albert-Zassenhaus algebras and isomorphisms. J. Algebra 57 (1979), 310–338.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    G. Brown, Cartan subalgebras of Zassenhaus algebras. Canad. J. Math. 27 (1975), 1011–1021.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A.S. Dzhumadil'daev, Simple Lie algebras with a subalgebra of codimension one. Russ. Math. Surv. 40 (1985), 215–216.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R. Ree, On generalized Witt algebras. Trans. Amer. Math. Soc. 83 (1956), 510–546.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    V.R. Varea, On the existence of ad-nilpotent elements and simple Lie algebras with subalgebras of codimension one. To appear in Proc. Amer. Math. Soc.Google Scholar
  8. [8]
    R.L. Wilson, Classification of generalized Witt algebras over algebraically closed fields. Trans. Amer. Math. Soc. 153 (1971), 191–210.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Alberto Elduque
    • 1
  1. 1.Departamento de Matemática Aplicada E.T.S.I.I.Universidad de ZaragozaZaragozaSpain

Personalised recommendations