Advertisement

Isomorphism classes of Hamiltonian lie algebras

  • G. M. Benkart
  • T. B. Gregory
  • J. M. Osborn
  • H. Strade
  • R. L. Wilson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1373)

1980 Mathematics Subject Classification

17B50 17B20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [H,P]
    W.V.D. Hodge and D. Pedoe, Methods of Algebraic Geometry Vol. I, Cambridge Univ. Press, New York (1947).zbMATHGoogle Scholar
  2. [K]
    V.G. Kac, Description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 800–834; English transl. Math. USSR-Izv. 8 (1974), 801–835. Errata 10 (1976), 1339.MathSciNetGoogle Scholar
  3. [K,K]
    M. I. Kuznetsov and S. A. Kirillov, Hamiltonian differential forms over an algebra of truncated polynomials, Uspekhi Mat 41 (1986) no.2 (248), 197–198; English transl. Russian Math. Surveys 41 (1986), 205–206.MathSciNetGoogle Scholar
  4. [T]
    S. A. Tyurin, The classification of deformations of a special Lie algebra Cartan type, Mat. Zametki 24 (1978), 847–857; English transl. Math. Notes 24 (1978) 948–954.MathSciNetzbMATHGoogle Scholar
  5. [W,1]
    R. L. Wilson, Classification or generalized Witt algebras over algebraically closed fields, Trans. Amer. Math. Soc. 153 (1971), 191–210.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [W,2]
    R. L. Wilson, Automorphisms of graded Lie algebras of Cartan type, Comm. in Algebra 7 (1975), 591–613.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [W,3]
    R. L. Wilson, A structural characterization of the simple Lie algebras of generalized Cartan type over fields of prime characteristic, J. Algebra 40 (1976), 418–465.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [W,4]
    R. L. Wilson, Simple Lie algebras of type S, J. Algebra 62 (1980), 292–298.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • G. M. Benkart
    • 1
  • T. B. Gregory
    • 2
  • J. M. Osborn
    • 1
  • H. Strade
    • 3
  • R. L. Wilson
    • 4
  1. 1.Department of MathematicsUniversity of WisconsinMadison
  2. 2.Department of MathematicsOhio State University at MansfieldMansfield
  3. 3.Department of MathematicsUniversity of Hamburg2 Hamburg 13Germany
  4. 4.Department of MathematicsRutgers UniversityNew Brunswick

Personalised recommendations