A differential geometric formalism for the ito calculus

  • P. A. Meyer
Papers Based On Main Talks And Courses
Part of the Lecture Notes in Mathematics book series (LNM, volume 851)


Brownian Motion Riemannian Manifold Tangent Vector Tangent Bundle Order Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    BISMUT (J.M.) Principes de mécanique Aléatoire. To appear.Google Scholar
  2. [2].
    DUNCAN (T.E.) Optimal control in a Riemannian tangent bundle. Measure theory, Oberwolfach 1979 (D. Kölzow ed.). Lecture Notes in M. 794, Springer 1980.Google Scholar
  3. [3].
    DYNKIN (E.B.). Diffusion of tensors. Soviet Math. Dokl. 9, 1968, p. 532–535.MathSciNetzbMATHGoogle Scholar
  4. [4].
    ELWORTHY (D.) Stochastic dynamical systems and their flows. Stochastic analysis, Academic Press, 1978, p. 79–96.Google Scholar
  5. [5].
    IKEDA (N.) and MANABE (S.) Integral of differential forms along the path of diffusion processes. Publ. RIMS, Kyoto Univ., 15, 1979, p.827–52.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6].
    ITO (K.) Stochastic differentials. Appl. M. and optimization 1, 1975, p. 374–381.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7].
    — Stochastic parallel displacement. Proc. Victoria Conf. on probabilistic methods in Diff. Eqs, p.1–7. LN 451, Springer 1975.Google Scholar
  8. [8].
    MALLIAVIN (P.) Géométrie différentielle stochastique. Presses de l'Université de Montréal, 1978.Google Scholar
  9. [9].
    SCHWARTZ (L.) Semimartingales sur des variétés, et martingales conformes sur des variétés analytiques complexes. LN 787, Springer 1980.Google Scholar
  10. [10].
    — Equations différentielles stochastiques sur des variétés, relèvement d'équations différentielles stochastiques et de semimartingales par des connexions sur des espaces fibrés. Preprint.Google Scholar
  11. [11].
    YOR (M.) Formule de Cauchy relative à certains lacets browniens. Bull. Soc. M. France 105, 1977, p. 3–31.MathSciNetzbMATHGoogle Scholar
  12. [12].
    — Sur quelques approximations d'intégrales stochastiques. Sém. Prob. XI, LN. 581, Springer 1977, p. 518–528.Google Scholar
  13. [13]
    AMBROSE (W.), PALAIS (R.S.) and SINGER (I.M.). Sprays. Anais Acad. Bras. Ciencias, 32, 1960, p. 163–178.MathSciNetGoogle Scholar
  14. [14].
    DOMBROWSKI (P.). On the geometry of the tangent bundle. J. Reine Angew. Math. 210, 1962, p. 73–88.MathSciNetzbMATHGoogle Scholar
  15. [15].
    GRIFONE (J.). Structure presque tangente et connexions. Ann. Inst. Fourier 22.1, 1972, p. 287–334.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16].
    HAMILTON (R.S.) Harmonic maps of manifolds with boundary. LN 471, 1975.Google Scholar
  17. [17].
    NELSON (E.) Dynamical theories of brownian motion. Princeton Univ. Press, 1967.Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • P. A. Meyer
    • 1
  1. 1.IRMAStrasbourg CedexFrance

Personalised recommendations