Advertisement

Right pure semisimple hereditary rings

  • Daniel Simson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 832)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auslander, M., Representation theory of artin algebras, Comm. in Algebra, 1(1974), 269–310.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Auslander, M., Large modules over artin algebras, Algebra, Topology and Category Theory, Academic Press, 1976, pp. 3–17.Google Scholar
  3. 3.
    Auslander, M., Reiten, I., Representation theory of artin algebras III, Almost split sequences, Comm. in Algebra, 3(1975), 239–294.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Auslander, M., Platzek, M.I., Reiten, I., Coxeter functors without diagrams, Trans. Amer. Math. Soc., to appear.Google Scholar
  5. 5.
    Cohn, P.M., On a class of binomial extensions, Illinois J. Math. 10(1966), 418–424.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dlab, V. Ringel, C.M., Representations of graphs and algebras, Memoirs Amer. Math. Soc., 173, 1976.Google Scholar
  7. 7.
    Dowbor, P., Simson, D., Quasi-Artin species and rings of finite representation type, J. Algebra, to appear.Google Scholar
  8. 8.
    Dowbor, P., Simson, D., A characterization of hereditary rings of finite representation type, to appear.Google Scholar
  9. 9.
    Fuller, K.R., On rings whose left modules are direct sums of finitely generated modules, Proc. Amer. Math. Soc., 54(1976), 39–44.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gruson, L., Simple coherent functors, Lecture Notes in Math., 488, Springer-Verlag, 1975, pp. 156–159.Google Scholar
  11. 11.
    Gruson, L., Jensen, C.U., L-dimensions of rings and modules, in preparation.Google Scholar
  12. 12.
    Kiełpiński, R., Simson, D., On pure homological dimension, Bull. Acad. Polon. Sci., 23(1975), 1–6.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Müller, B.J., On Morita duality, Can. J. Math., 21(1969), 1338–1347.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ringel, C.M., Tachikawa, H., QF-3 rings, J. Reine Angew. Math., 272(1975), 49–72.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Simson, D., Functor categories in which every flat object is projective, Bull. Acad. Polon. Sci., 22(1974), 375–380.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Simson, D., On pure global dimension of locally finitely presented Grothendieck categories, Fund. Math., 96(1977), 91–116.MathSciNetzbMATHGoogle Scholar
  17. 17.
    Simson, D., On pure semi-simple Grothendieck categories, Fund. Math., 100(1978), 211–222.MathSciNetzbMATHGoogle Scholar
  18. 18.
    Simson, D., Pure semisimple categories and rings of finite representation type, J. Algebra, 48(1977), 290–296.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Simson, D., Categories of representations of species, J. Pure Appl. Algebra, 14(1979), 101–114.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Daniel Simson
    • 1
  1. 1.Institute of MathematicsNicholas Copernicus UniversityToruńPoland

Personalised recommendations