Advertisement

Representation theory of blocks of defect 1

  • K. W. Roggenkamp
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 832)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    Alperin, J.L.: Resolution for finite groups. Finite groups. Proceedings of the Taniguchi Symposium: Division Mathematics, No.1 (1976)Google Scholar
  2. [AG]
    Auslander, M., O. Goldman: Maximal Orders. Trans.Am.Math.Soc. 97 (1960), 1–24.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [B]
    Brauer, R.: Investigations on group characters. Ann. of Math. 42 (1941), 936–958MathSciNetCrossRefzbMATHGoogle Scholar
  4. [B1]
    Brumer, A.: Structure of hereditary orders. Bull.Am.Math.Soc. 69 (1963), 721–729MathSciNetCrossRefzbMATHGoogle Scholar
  5. [G]
    Green, J.A.: A transfer theorem for modular representations. J.Algebra 1 (1964), 73–84MathSciNetCrossRefzbMATHGoogle Scholar
  6. [G1]
    Green, J.A.: Vorlesungen über modulare Darstellungstheorie endlicher Gruppen. Vorlesungen aus dem Math.Institut Giessen, Heft 2 (1974)Google Scholar
  7. [H]
    Harada, M.: Structure of hereditary orders over local rings. J. of Mathematics, Osaka City Univ. 14 (1963), 1–22MathSciNetzbMATHGoogle Scholar
  8. [M1]
    Michler, G.O.: Green correspondence between blocks with cyclic defect groups I. J.AlgebraGoogle Scholar
  9. [M]
    Michler, G.O.: Green correspondence between blocks with cyclic defect groups II. Representations of Algebras, Springer Lecture Notes in Math. 488 (1975), 210–235MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Pu]
    Pu, M.L.: Integral representations of non-abelian groups of order pq. Mich.Math.J. 12 (1965), 231–246MathSciNetCrossRefzbMATHGoogle Scholar
  11. [R]
    Reiner, I.: Relations between integral and modular representations. Mich.Math.J. 13 (1966), 357–372MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Ro]
    Roggenkamp, K.W.: Lattices over orders II. Springer Lecture Notes in Mathematics 142 (1970)Google Scholar
  13. [R1]
    Roggenkamp, K.W.: Representation theory of finite groups. Séminaire de Mathématiques Supérieures, Eté 1979 Les Presses de l’Université de Montréal to appearGoogle Scholar
  14. [RR]
    Roggenkamp, K.W., C.M. Ringel: Diagrammatic methods in the representation theory of orders. J.of Algebra, 60(1979), 11–42.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [RS]
    Roggenkamp, K.W., J. Schmidt: Almost split sequences for integral group rings and orders. Com. in Algebra 4 (10), (1976), 893–917MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • K. W. Roggenkamp
    • 1
  1. 1.Mathematisches Institut BUniversität StuttgartStuttgart-80

Personalised recommendations