Advertisement

Representation-finite selfinjective algebras of class An

  • Christine Riedtmann
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 832)

Keywords

Projective Cover Projective Resolution Injective Hull Stable Path Faithful Functor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    AUSLANDER, M.: Representation Theory of Artin algebras II, Comm. Algebra (1974), 269–310Google Scholar
  2. [2]
    AUSLANDER, M. and REITEN, I.: Representation Theory of Artin algebras III, Comm. Algebra (1975), 239–294Google Scholar
  3. [3]
    AUSLANDER, M. and REITEN, I.: Representation Theory of Artin algebras IV, Comm. Algebra (1977), 443–518Google Scholar
  4. [4]
    AUSLANDER, M. and REITEN, I.: Representation Theory of Artin algebras V, Comm. Algebra (1977), 519–554Google Scholar
  5. [5]
    GABRIEL, P. and RIEDTMANN, Chr.: Group representations without groups, Comm. Math. Helvetici (1979), 1–48Google Scholar
  6. [6]
    RIEDTMANN, Chr.: Algebren, Darstellungsköcher, Ueberlagerungen und zurück, Comm. Math. Helvetici (1980), to appearGoogle Scholar
  7. [7]
    GABRIEL, P.: Christine Riedtmann and the selfinjective algebras of finite representation type, in Ring Theory, Proceedings of the 1978 Antwerp Conference, 453–458, Marcel Dekker, New York 1979Google Scholar
  8. [8]
    SCHERZLER, E. and WASCHBUESCH, J.: A class of selfinjective algebras of finite representation type, Proceedings of the second International Conference on Representation of Algebras, Ottawa 1979Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Christine Riedtmann
    • 1
    • 2
  1. 1.Basel
  2. 2.Zürich

Personalised recommendations