Hereditary Artinian rings of finite representation type

  • P. Dowbor
  • C. M. Ringel
  • D. Simson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 832)


Division Ring Indecomposable Module Dimension Sequence Branch System Coxeter Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Auslander, M., Reiten, I.: Representation theory of artin algebras III: Almost split sequences. Comm. Algebra 3 (1975), 239–294.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Berstein, I. N., Gelfand, I. M. Ponomarev, V. A.: Coxeter functors and Gabriel’s theorem. Uspiechi Mat. Nauk 28, 19–33 (1973), translation: Russian Math. Surveys 28 (1973), 17–32.Google Scholar
  3. [3]
    Bourbaki, N.: Groupes et algèbres de Lie, Ch. 4,5,6. Paris: Hermann 1968.Google Scholar
  4. [4]
    Cohn, P. M.: Skew field constructions. London Math. Soc. Lecture Note Series 27, Cambridge 1977.Google Scholar
  5. [5]
    Dlab, V., Ringel, C. M.: Decomposition of modules over right uniserial rings. Math. Z. 129 (1972), 207–230.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    —,—: On algebras of finite representation type. J. Algebra 33 (1975), 306–394.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    -,-: Indecomposable representations of graphs and algebras. Memoirs Amer. Math. Soc. 173 (1976).Google Scholar
  8. [8]
    Dowbor, P., Simson, D,: Quasi-artin species and rings of finite representation type. J. Algebra, to appear.Google Scholar
  9. [9]
    -,-: A characterization of hereditary rings of finite representation type. to appear.Google Scholar
  10. [10]
    -,-: On bimodules of finite representation type. preprint.Google Scholar
  11. [11]
    Gabriel, P.: Unzerlegbare Darstellungen I. Manuscripta Math. 6 (1972), 71–103.MathSciNetCrossRefGoogle Scholar
  12. [12]
    — Indecomposable representations II. Symposia Math. Ist. Naz. Alta Mat. Vol. XI (1973), 81–104.MathSciNetzbMATHGoogle Scholar
  13. [13]
    Ringel, C. M.: Representations of K-species and bimodules. J. Algebra 41 (1976), 296–302.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Rosenberg, A., Zelinsky, D.: On the finiteness of the injective hull. Math. Z. 70 (1959), 372–380.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Tachikawa, H.: On algebras of which every indecomposable representation has an irreducible one as the top or the bottom Loewy constituent. Math. Z. 75 (1961), 215–227.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Vinogradov, I. M.: Elements of number theory. Dover Publications (1954).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • P. Dowbor
    • 1
  • C. M. Ringel
    • 2
  • D. Simson
    • 1
  1. 1.Institute of MathematicsNicholas Copernicus UniversityToruń
  2. 2.Fakultät für MathematikUniversitätBielefeld

Personalised recommendations