Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors

  • Sheila Brenner
  • M. C. R. Butler
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 832)


Exact Sequence Full Subcategory Projective Cover Projective Resolution Primitive Idempotent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AUSLANDER, M. and PLATZECK, M.I.: Representation theory of hereditary artin algebras, Lecture Notes in Pure and Appl. Math., vol.37, 389–424, Dekker, New York, 1978.MathSciNetzbMATHGoogle Scholar
  2. 2.
    AUSLANDER, M., PLATZECK, M.I. and REITEN, I.: Coxeter functors without diagrams, Trans. A.M.S., 250 (1979), 1–46.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    AUSLANDER, M. and REITEN, I.: Representation theory of artin algebras, Parts I–VI, Communications in Algebra, 1974–1978.Google Scholar
  4. 4.
    BAUTISTA, R.: Classification of certain algebras of finite representation type, Communication Interna, No.51, 1978, Departmento de Matematicas, Facultad de Ciencias, UNAM.Google Scholar
  5. 5.
    BAUTISTA, R.: Sections in Auslander-Reiten quivers, preprint, 1979.Google Scholar
  6. 6.
    BERNSTEIN, I.N., GELFAND, I.M. and PONOMAREV, V.A.: Coxeter functors and Gabriel’s theorem, Uspechi Mat. Nauk. 28, 19–38, (1973) = Russian Math. Surveys 28, 17–32 (1973).MathSciNetzbMATHGoogle Scholar
  7. 7.
    BRENNER, S.: Quivers with commutativity conditions and some phenomenology of forms, Proc. ICRA 1974, Springer Lecture Notes 488, 29–53.Google Scholar
  8. 8.
    BRENNER, S. and BUTLER, M.C.R.: The equivalence of certain functors occurring in the representation theory of artin algebras and species, J. London Math. Soc. (2) 14 (1976), 207–215.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    CARTAN, H. and EILENBERG, S.: Homological algebra. Princeton University Press, 1956.Google Scholar
  10. 10.
    DLAB, V. and RINGEL, C.M.: Indecomposable representations of graphs and algebras, Memoirs A.M.S., No.173, (1976).Google Scholar
  11. 11.
    DONOVAN, P. and FREISLICH, M.R.: Indecomposable representations of certain commutative quivers, Bull. Austral. Math. Soc. 20 (1979), 17–34.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    GABRIEL, P.: Representations indecomposable, Seminaire Bourbaki (1973/74), Exp. 444.Google Scholar
  13. 13.
    GELFAND, I.M. and PONOMAREV, V.A.: Problems of linear algebra and the classification of quadruples of subspaces in a finite-dimensional vector space, Coll. Math. Soc. Bolyai 5, Tihany (1970), 163–237.Google Scholar
  14. 14.
    HUGHES, D.W.: Private communication.Google Scholar
  15. 15.
    KAC, V.G.: Infinite root systems, representations of graphs, and invariant theory, preprint, 1979.Google Scholar
  16. 16.
    KAC, V.G.: Infinite root systems, representations of quivers, and invariant theory, This Proceedings.Google Scholar
  17. 17.
    LOUPIAS, M.: Representations indecomposable des ensembles ordonnes finis, These, Universite Tours, 1975. (Summary: Proc. ICRA, 1974, Springer Lecture Notes 488, 201–209.)Google Scholar
  18. 18.
    MARMARIDIS, N.: Darstellungen endlichen Ordnungen, Dissertation, Universität Zürich, 1978.Google Scholar
  19. 19.
    MARMARIDIS, N.: Reflection functors, This Proceedings.Google Scholar
  20. 20.
    NAZAROVA, L.A. and ROITER, A.V.: On a problem of I.M. Gelfand, Funkc. Anal. i Prilozen. 7 (1973), 54–69.MathSciNetGoogle Scholar
  21. 21.
    NAZAROVA, L.A. and ROITER, A.V.: Categorical matrix problems and the Brauer-Thrall conjecture, Inst. Math. Acad. Sc., Ukr. SSR, Kiev, 1973. = (German translation) Mitteilungen Mathem. Seminar Giessen, Heft 15, 1975.Google Scholar
  22. 22.
    RINGEL, C.M.: Representations of K-species and bimodules, J. Algebra 41 (1976), 269–302.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    RINGEL, C.M.: This Proceedings.Google Scholar
  24. 24.
    SHKABARA, A.S.: Commutative quivers of tame type, I, preprint, Kiev, 1978.Google Scholar
  25. 25.
    ZAVADSKI, A.G.: Quivers with a distinguished path and no cycles which are of tame type, preprint, Kiev, 1978.Google Scholar
  26. 26.
    ZAVADSKI, A.G. and SHKABARA, A.S.: Commutative quivers and matrix algebras of finite type, preprint, Kiev, 1976.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Sheila Brenner
    • 1
  • M. C. R. Butler
    • 1
  1. 1.Departments of MathematicsThe UniversityLiverpoolEngland

Personalised recommendations