Sections in Auslander-Reiten quivers

  • R. Bautista
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 832)


Dynkin Diagram Division Ring Composition Factor Tensor Category Split Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Auslander, M.: Representation theory of Artin algebras I, Comm. in Algebra, Vol. I No. 3, 177–268 (1974).MathSciNetzbMATHGoogle Scholar
  2. [2]
    Auslander, M., Platzeck, M.I.: Representation theory of hereditary Artin algebras, Proc. Conf. on Representation theory (Philadelphia 1976), Marcel Dekker, 389–424 (1978).Google Scholar
  3. [3]
    Bautista, R.: Algebras close to hereditary algebras, Oberwolfach Conf. report, 17–21 (1977), preprint.Google Scholar
  4. [4]
    Bautista, R.: Irreducible maps and the radical of a category, preprint.Google Scholar
  5. [5]
    Bernstein, I.N., Gelfand, I.M., Ponomarev, V.A.: Coxeter functors and Gabriel’s theorem, Uspechi Mat. Nauk 28 (1973) translated in Russian Math. Surveys, 17–23 (1973).Google Scholar
  6. [6]
    Dlab, V., Ringel, C.M.: On algebras of finite representation type, J. Algebra 33, 306–394 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Dlab, V., Ringel, C.M.: Indecomposable representations of graphs and algebras, Memoirs, Amer. Math. Soc. 173, Providence (1976).Google Scholar
  8. [8]
    Riedtmann Ch.: Algebren, Darstellungsköcher, Ueberlagerungen und Zurück, Thesis 1979 (Zürich).Google Scholar
  9. [9]
    Todorov, G.: Almost split sequences for trD-periodic modules M, with no projectives in the class [M], preprint (1979).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • R. Bautista
    • 1
  1. 1.Instituto de Matematicas U. N. A. M.México 20, D.F.Mexico

Personalised recommendations