Advertisement

Uniserial functors

  • Maurice Auslander
  • Idun Reiten
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 832)

Keywords

Exact Sequence Finite Type Projective Cover Projective Resolution Indecomposable Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auslander, M.: Functors and morphisms determined by objects. Proc.Conf.Temple Univ.1976. Lecture Notes in Pure and Applied Math. Vol.37, M.Dekker, N.Y.1978.zbMATHGoogle Scholar
  2. 2.
    Auslander, M.: Applications of morphisms determined by modules. Proc.Conf. Temple Univ.1976. Lecture Notes in Pure and Applied Math. Vol. 37, M.Dekker, N.Y. 1978.zbMATHGoogle Scholar
  3. 3.
    Auslander, M., Reiten I.: Stable equivalence of artin algrbras, Conf.on orders, group rings and related topics. Springer-Verlag 353, 8–71 (1973).Google Scholar
  4. 4.
    Auslander, M., Reiten I.: Stable equivalence of dualizing R-varieties. Adv.in Math. Vol.12, No.3, 306–366 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Auslander, M., Reiten, I.: Representation theory of artin algebras III: Almost split sequences. Comm.in Algebra, Vol.3, No.3, 239–294 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Auslander, M., Reiten, I.: Representation theory of artin algebras IV: Invariants given by almost split sequences. Comm.in Algebra 5, 443–518 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Auslander, M., Reiten, I.: Representation theory of artin algebras V: Methods for computing almost split sequences and irreducible morphisms. Comm.in Algebra 5, 519–554 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Auslander, M., Reiten, I.: Representation theory of artin algebras VI: A functorial approach to almost split sequences. Comm.in Algebra 11,279–291 (1977)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Auslander, M., Smalø, S.: Preprojective modules: An introduction and some applications. These Proceedings.Google Scholar
  10. 10.
    Butler, M., Shahzamanian: The construction of almost split sequences III: Modules over two classes of tame local algebras.Google Scholar
  11. 11.
    Gabriel, P., Riedtmann, C.: Group representations without groups. Comm.Math.Helvetici 54, 240–287 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Martinez, R.: Algebras stably equivalent to 1-hereditary algebras. These Proceedings.Google Scholar
  13. 13.
    Platzeck, M.I.: On algebras stably equivalent to an hereditary algebra, Can.J.Math. 30, No.4, 817–829 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Reiten, I.: A note on stable equivalence and Nakayama algebras. Proc.Amer.Math.Soc. 71,2, 157–163 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Reiten, I.: Almost split sequences, Proc. Antwerp Ring Theory Conference 1978.Google Scholar
  16. 16.
    Riedtmann, C.: Algebren, Darstellungsköcher, Überlagerungen und zurück.Google Scholar
  17. 17.
    Tachikawa, H.: On rings for which every indecomposable right module has a unique maximal submodule. Math.Z.71, 200–222 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Tachikawa,H.: Balancedness and left serial algebras of finite type. Proc.ICRA 1974, Springer Lecture Notes 488, 351–378 (1975)Google Scholar
  19. 19.
    Todorov, G.: Almost split sequences in the representation theory of certain classes of artin algebras, Ph.D.Thesis, Brandeis Univ.(1978)Google Scholar
  20. 20.
    Todorov, G.: Almost split sequences for TrD-periodic modules. These Proceedings.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Maurice Auslander
    • 1
    • 2
  • Idun Reiten
    • 1
    • 2
  1. 1.Department of MathematicsBrandeis UniversityWalthamUSA
  2. 2.Matematisk instituttUniversitetet i Trondheim, NLHTDragvollNorway

Personalised recommendations