Advertisement

Isotopy classes of diffeomorphisms of (k-1)-connected almost-parallelizable 2k-manifolds

  • M. Kreck
Geometry Of Manifolds
Part of the Lecture Notes in Mathematics book series (LNM, volume 763)

Keywords

Exact Sequence Direct Summand Normal Bundle Homotopy Group Nontrivial Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.F. Adams: On the group J(x) — IV, Topology 5, 21–71 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    W. Browder: Diffeomorphisms of 1-connected manifolds, Trans. A.M.S. 128, 155–163 (1967).MathSciNetzbMATHGoogle Scholar
  3. [3]
    W. Browder and J. Levine: Fibering manifolds over a circle, Comm. Math. Helv. 40, 153–160 (1965/66)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J. Cerf: The pseudo-isotopy theorem for simply connected differentiable manifolds, Manifolds Amsterdam, Springer Lecture notes 197, 76–82 (1970)Google Scholar
  5. [5]
    M. Kervaire: Some nonstable homotopy groups of Lie groups, Illinois J. Math 4, 161–169 (1960)MathSciNetzbMATHGoogle Scholar
  6. [6]
    M. Kervaire and J. Milnor: Groups of homotopy spheres, Ann. of Math. 77, 504–537 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A. Kosinski: On the inertia group of Π-manifolds, Am. J. Math. 89 227–248 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    M. Kreck: Eine Invariante für stabil parallelisierte Manigfaltikeiten, Bonner Math. Schriften Nr. 66 (1973)Google Scholar
  9. [9]
    M. Kreck: Bordismusgruppen von Diffeomorphismen, Habilitationsschrift, Bonn (1976)Google Scholar
  10. [10]
    G. Lusztig, J. Milnor and F.P. Peterson: Semi-characteristics and cobordism, Topology 8, 357–360 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    H. Saito: Diffeomorphism groups of Sp × Sq and exotic spheres, Quart. J. Math. Oxford, 20, 255–276 (1969)MathSciNetCrossRefGoogle Scholar
  12. [12]
    S. Smale: On the structure of manifolds, Amer. J. Math. 84, 387–399 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    R.E. Stong: Notes on cobordism theory. Math. notes, Princeton University Press (1968)Google Scholar
  14. [14]
    D. Sullivan: Infinitesimal computations in topology, Publ. I.H.E.S. 47 Paris, 1978zbMATHGoogle Scholar
  15. [15]
    H. Toda: Composition methods in homotopy groups of spheres, Ann. of Math. Study 49, Princeton University Press, 1962Google Scholar
  16. [16]
    E.C. Turner: Diffeomorphisms homotopic to the Identity, Trans. A.M.S. 186, 489–498 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    E.C. Turner: A survey of diffeomorphism groups. Algebraic and geometrical methods in topology. Springer lecture notes 428, 200–219 (1974)Google Scholar
  18. [18]
    C.T.C. Wall: Diffeomorphisms of 4-manifolds, J. London Math. Soc. 39, 131–140 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    C.T.C. Wall: Classification problems in differential topology II: Diffeomorphisms of handlebodies, Topology 2, 263–272 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    C.T.C. Wall: Classification problems in differential topology III: Applications to special cases, Topology 3, 291–304 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J. Levine: Inerta groups of manifolds and diffeomorphisms of spheres, Ann.J.Math.92, 243–258 (1970).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • M. Kreck
    • 1
  1. 1.Fachbereich MathematikUniversität MainzMainzWest Germany

Personalised recommendations