Remarks on Novikov's conjecture and the topological-euclidean space form problem

  • F. T. Farrell
  • W. C. Hsiang
Geometry Of Manifolds
Part of the Lecture Notes in Mathematics book series (LNM, volume 763)


Short Exact Sequence Closed Manifold Free Abelian Group Topological Invariance Homotopy Invariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. E. Cappell, Unitary nilpotent groups and Hermitian K-theory, Bull. AMS 80 (1974), 1117–1122.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    _____, A splitting theorem for manifolds, Invent. Math. 33 (1976), 69–170.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    _____, On homotopy invariance of higher signatures, Invent. Math. 33 (1976), 171–179.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    F. T. Farrell and W. C. Hsiang, Manifolds with π1 = G × αT, Amer. J. Math. 95 (1973), 813–848.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    __________, Rational L-groups of Bieberbach groups, Comment. Math. Helv. 52 (1977), 89–109.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    __________, The topological Euclidean space form problem, Invent. Math. 45 (1978), 181–192.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    __________, On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, Proc. Symp. Pure Math. 32 part 1, Algebraic and geometric topology, AMS 1978, 325–337.Google Scholar
  8. [8]
    W. C. Hsiang, A splitting theorem and Künneth formula in algebraic K-theory, Algebraic K-theory and its geometric applications, Lecture Notes in Math., Vol. 108, Springer-Verlag, Berlin and New York, 1969, 72–77.CrossRefGoogle Scholar
  9. [9]
    _____, Manifolds with π1 = Zk, Manifolds-Amsterdam 1970, Lecture Notes in Math. Vol. 197, Springer-Verlag, Berlin and New York, 1971, 36–43.CrossRefGoogle Scholar
  10. [10]
    G. G. Kasparov, The homotopy invariance of the rational Pontrjagin numbers, Dokl. Akad. Nauk. SSSR 190 (1970), 1022–1025.MathSciNetGoogle Scholar
  11. [11]
    _____, Topological invariance of elliptic operator I, K-homology, Izv. Akad. Nauk SSSR, Ser. Mat. 39 (1975), 796–838.MathSciNetzbMATHGoogle Scholar
  12. [12]
    J.-L. Loday, K-théorie algebrique et représentations de groupes, Ann. Sci. E'cole Norm. Sup. 9 (1976), 309–377.MathSciNetzbMATHGoogle Scholar
  13. [13]
    G. Lusztig, Novikov's higher signature and families of elliptic operators, J. Differential Geometry 7 (1972), 229–256.MathSciNetzbMATHGoogle Scholar
  14. [14]
    A. S. Miščenko, Infinite-dimensional representations of discrete groups and higher signatures, Izv. Akad. Nauk. SSSR Ser. Mat. 38 (1974), 81–106.MathSciNetGoogle Scholar
  15. [15]
    S. P. Novikov, Homotopic and topological invariance of certain rational classes of Pontrjagin, Dokl. Akad. Nauk SSSR 162 (1965), 1248–1251.MathSciNetzbMATHGoogle Scholar
  16. [16]
    V. A. Rohlin, Pontrjagin-Hirzebruch class of codimension 2, Izv. Akad. Nauk SSSR Ser. Math. 30 (1966), 705–718.MathSciNetGoogle Scholar
  17. [17]
    C. T. C. Wall, Surgery on compact manifolds, Academic Press, New York, 1970.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • F. T. Farrell
  • W. C. Hsiang

There are no affiliations available

Personalised recommendations