Finding framed ℤp actions on exotic spheres

  • Reinhard Schultz
Transformation Groups
Part of the Lecture Notes in Mathematics book series (LNM, volume 763)


Exact Sequence Decomposition Theorem Lens Space Normal Invariant Frameable Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Adams, On the groups J(X)-I, Topology 2(1963), 181–195.MathSciNetCrossRefGoogle Scholar
  2. 2.
    J. C. Becker and D. H. Gottlieb, The transfer map and fiber bundles, Topology 14(1975), 1–12.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    J. Ewing, Spheres as fixed point sets, Quart. J. Math. Oxford (2) 27(1976), 445–455.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    _____, Semifree actions of finite groups on homotopy spheres, Trans. Amer. Math. Soc., to appear.Google Scholar
  5. 5.
    L. Jones, The converse to the fixed point theorem of P. A. Smith: I, Ann. of Math. 94(1971), 52–68.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    _____, Ibid: The converse to the fixed point theorem of P. A. Smith: II, Indiana Univ. Math. J. 22(1972), 309–325; correction 24(1975), 1001–1003.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    M. Kervaire and J. Milnor, Groups of homotopy spheres, Ann. of Math. 78(1963), 514–537.MathSciNetzbMATHGoogle Scholar
  8. 8.
    P. Löffler, Über die G-Rahmbarigkeit von G-Homotopiesphären, Arch. Math. (Basel) 29(1977), 628–634.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    _____, Equivariant frameability of involutions on homotopy spheres, Manuscripta Math. 23(1978), 161–171.CrossRefGoogle Scholar
  10. 10.
    M. Rothenberg, Differentiable group actions on spheres, Proc. Adv. Study Inst. on Algebraic Topology (Aarhus 1970), 455–475. Matematisk Institut, Aarhus Universitet, 1970.Google Scholar
  11. 11.
    R. Schultz, ℤ2-torus actions on homotopy spheres, Proc. Second Conf. on Compact Transformation Groups (Amherst, Mass., 1971), Lecture Notes in Math. Vol. 298, 117–118. Springer, New York, 1972.Google Scholar
  12. 12.
    _____, Homotopy decompositions of equivariant function spaces I, Math. Z. 131(1973), 49–75.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    _____, Homotopy sphere pairs admitting semifree differentiable actions, Amer. J. Math. 96(1974), 308–323.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    _____, Differentiable group actions on homotopy spheres: I, Invent. Math. 31(1975), 105–128.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    _____, Spherelike G-manifolds with exotic equivariant tangent bundles, Studies in Algebraic Topology (Adv. in Math. Suppl. Studies, Vol. 5), 1–38. Academic Press, New York (to appear in 1979).Google Scholar
  16. 16.
    _____, Smooth actions of small groups on exotic spheres, Proc. A.M.S. Sympos. Pure Math. 32, Pt.1(1978), 155–160.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    _____, Isotopy classes of periodic diffeomorphisms on spheres, Proc. Waterloo Alg. Top. Conference (June, 1978), to appear.Google Scholar
  18. 18.
    V. P. Snaith, Algebraic Cobordism and K-Theory, Memoris. Amer. Math. Soc., to appear.Google Scholar
  19. 19.
    C. T. C. Wall, Classification of Hemitian forms-VI. Group rings, Ann. of Math. 103(1976), 1–80.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Reinhard Schultz
    • 1
  1. 1.Purdue UniversityWest Lafayette

Personalised recommendations