Three theorems in transformation groups

  • Ted Petrie
Transformation Groups
Part of the Lecture Notes in Mathematics book series (LNM, volume 763)


Vector Bundle Complex Representation Sylow Subgroup Homotopy Type Free Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 0.
    Atiyah, M. F.: Characters and cohomology of finite groups, Pub. I.H.E.S. No. 9 (1961)Google Scholar
  2. 1.
    Atiyah, M.F. and Bott, R.: The Lefschetz fixed point theorem for elliptic complexes II, Ann. of Math. 86 (1967) 451–491.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 2.
    Bredon, G.: Fixed point sets of actions on Poincaré Duality Spaces, Topology 12 (1973) 159–175.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 3.
    tom Dieck, T.: Homotopy equivalent group representations, J. reine angew. Math. 298 (1978) 182–195.MathSciNetzbMATHGoogle Scholar
  5. 4.
    tom Dieck, T.: Homotopy equivalent group representations and Picard groups of the Burnside ring and the character ring, Manuscripta math., to appear.Google Scholar
  6. 5.
    tom Dieck, T.: The Burnside ring of a compact Lie group I, Math. Ann. 215 (1975), 235–250.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 6.
    tom Dieck, T. and Petrie, T.: The homotopy structure of finite group actions on spheres, Proceedings of Waterloo topology Conference 1978, to appear.Google Scholar
  8. 7.
    Dovermann, H.: Thesis, Rutgers University 1978.Google Scholar
  9. 8.
    Dovermann, H. and Petrie, T.: G surgery III, to appear.Google Scholar
  10. 9.
    Feit, W.: Characters of Finite Groups, Benjamin (1967).Google Scholar
  11. 10.
    Madsen, I, Thomas, C. and Wall, C. T. C.: The spherical space form problem II, Topology (1977).Google Scholar
  12. 11.
    Milnor, J.: Whitehead Torsion, Bull. AMS 72 (1966), 358–426.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 12.
    Milnor, J.: Groups which act on Sn without fixed pooints, Am. J. Math. 79 (1967) 86–110.MathSciNetGoogle Scholar
  14. 13.
    Oliver, R. and Petrie, T.: G-CW surgery and Ko(Z(G)), to appear.Google Scholar
  15. 14.
    Petrie, T.: Free metacyclic group actions on homotopy spheres, Ann. of Math. (1972).Google Scholar
  16. 15.
    Petrie, T.: Representation theory surgery and free actions of finite groups on varieties and homotopy spheres. Springer Verlag 168 (1970).Google Scholar
  17. 16.
    Petrie, T.: G surgery I-Proceedings of Santa Barbara topology Conference 1977, to appear.Google Scholar
  18. 17.
    Petrie, T.: G surgery II, to appear.Google Scholar
  19. 18.
    Segal, G.: Equivariant stable homotopy, Proc. I.C.M. (1970) 59–63.Google Scholar
  20. 19.
    Swan, R.: Periodic resolutions for finite groups, Ann. of Math. 72 (1960) 267–291.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 20.
    Wall, C. T. C.: Periodic projective resolutions, preprint.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Ted Petrie
    • 1
  1. 1.Rutgers UniversityUSA

Personalised recommendations