Semi-linear group actions on spheres: Dimension functions

  • Tammo tom Dieck
Transformation Groups
Part of the Lecture Notes in Mathematics book series (LNM, volume 763)


Direct Summand Nilpotent Group Dimension Function Sylow Subgroup Grothendieck Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borel, A.: Fixed point theorems for elementary commutative groups. In: Seminar on transformation groups. Princeton University Press, Princeton 1960.Google Scholar
  2. 2.
    tom Dieck, T., and T. Petrie: Geometric modules over the Burnside ring. Inventiones math. 47, 273–287 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    tom Dieck, T., and T. Petrie: The homotopy structure of finite group actions on spheres. Proceedings of Waterloo topology Conference 1978.Google Scholar
  4. 4.
    Huppert, B.: Endliche Gruppen I. Springer Verlag, Berlin-Heidelberg-New York 1967.CrossRefzbMATHGoogle Scholar
  5. 5.
    Lee, Chung-Nim, and A. G. Wasserman: On the groups JO(G). Mem. Amer. Soc. 1959 (1975).Google Scholar
  6. 6.
    Roquette, P.: Realisierung von Darstellungen endlicher nilpotenter Gruppen. Arch. Math. 9, 241–250 (1958).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Segal, G. B.: Permutation representations of finite p-groups. Quart. J. Math. Oxford (2), 23, 375–381 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Serre, J.-P.: Représentations linéaires des groupes finis. 2. éd. Paris: Hermann 1971.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Tammo tom Dieck

There are no affiliations available

Personalised recommendations