Algebraic K-theory of topological spaces. II

  • Friedhelm Waldhausen
Algebraic K- And L-Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 763)


Simplicial Object Simplicial Ring Stable Homotopy Splitting Theorem Weak Homotopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.W. Anderson, Chain functors and homology theories, Sympos. Algebraic Topology, Lecture Notes in Math., vol. 249, Springer Verlag, 1971, pp. 1–12.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    H. Bass, Algebraic K-theory, Benjamin, New York (1968).zbMATHGoogle Scholar
  3. 3.
    W. Browder, Algebraic K-theory with coefficients Z/p, Geometric Applications of Homotopy Theory I, Lecture Notes in Math., vol. 657, Springer Verlag, 1978, pp. 40–84.MathSciNetCrossRefGoogle Scholar
  4. 4.
    D.M. Kan, A combinatorial definition of homotopy groups, Ann. of Math. 67 (1958), 282–312.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    R. Lee and R.H. Szczarba, The group K 3 (Z) is cyclic of order forty-eight, Ann. of Math. 104 (1976), 31–60.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J.L. Loday, K-théorie algébrique et représentations des groupes, Ann. Sc. Ec. Norm. Sup., t. 9 (1976), 309–377.MathSciNetzbMATHGoogle Scholar
  7. 7.
    —, Homotopie des espaces de concordances, Séminaire Bourbaki, 30e année, 1977/78, no 516.Google Scholar
  8. 8.
    J.P. May, A ring spaces and algebraic K-theory, Geometric Applications of Homotopy Theory II, Lecture Notes in Math., vol. 658, Springer Verlag, 1978, pp. 240–315MathSciNetCrossRefGoogle Scholar
  9. 9.
    D.G. Quillen, Cohomology of groups, Actes, Congrès Intern. Math., 1970, t. 2, pp. 47–51.MathSciNetGoogle Scholar
  10. 10.
    —, (Letter to Milnor), Algebraic K-theory, Lecture Notes in Math., vol. 551, Springer Verlag, 1976, pp. 182–188.MathSciNetCrossRefGoogle Scholar
  11. 11.
    G. Segal, Categories and cohomology theories, Topology 13 (1974), 293–312.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    —, Configuration spaces and iterated loop spaces, Inventiones math. 21 (1973), 213–221.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    F. Waldhausen, Algebraic K-theory of generalized free products, Ann. of Math. 108 (1978), 135–256.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    —, Algebraic K-theory of topological spaces. I, Proc. Symp. Pure Math., Vol. 32, 1978, pp. 35–60.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    —, Algebraic K-theory of spaces, in preparation.Google Scholar
  16. 16.
    M. Zisman, Suite spectrale d'homotopie et ensembles bisimpliciaux, preprint.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Friedhelm Waldhausen

There are no affiliations available

Personalised recommendations