Advertisement

Topological classifications of Sℓ2\((\mathbb{F}_p )\) space forms

  • Erkki Laitinen
  • Ib Madsen
Algebraic K- And L-Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 763)

Keywords

Exact Sequence Conjugacy Class Space Form Class Number Topological Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    D.A. Anderson, The Whitehead torsion of a fiber homotopy equivalence, Michigan Math. J. 21 (1974), 171–180.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [AG]
    M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans.Amer.Math.Soc. 97 (1960), 367–409.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [B]
    H. Bauer, Numerische Bestimmung von Klassenzahlen reeller zyklischer Zahlkörper, J.Number Theory 1 (1969), 161–162.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [CE]
    H.Cartan and S.Eilenberg, Homological Algebra, Princeton University Press 1956.Google Scholar
  5. [D]
    A. Dress, Induction and structure theorems for orthogonal representations of finite groups, Ann.of Math. 102 (1975), 291–325.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Ha]
    H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin 1952.zbMATHGoogle Scholar
  7. [H]
    B. Huppert, Endliche Gruppen I, Die Grundlehren der mathematischen Wissenschaften 134, Springer-Verlag, Berlin Heidelberg New York 1967.Google Scholar
  8. [I]
    K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math.Sem.Univ.Hamburg 20 (1956), 257–258.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [K]
    E.E. Kummer, Über eine Eigenschaft der Einheiten der aus den Wurzeln der Gleichung αλ = 1 gebildeten complexen Zahlen,und über den Zweiten Factor der Klassenzahl, pp.919–944 in Collected Papers Vol.I, Springer-Verlag, Berlin Heidelberg New York 1975.Google Scholar
  10. [M]
    I. Madsen, Smooth spherical space forms, pp.303–352 in Geometric applications of homotopy theory I, Proceedings Evanston 1977, Lecture Notes in Mathematics 657, Springer-Verlag, Berlin Heidelberg New York 1978.CrossRefGoogle Scholar
  11. [Ml]
    I.Madsen, Spherical space forms, Proceedings of the International Congress of Mathematicians 1978, Helsinki.Google Scholar
  12. [MM]
    I.Madsen and R.J.Milgram, The cobordism of topological and PL-manifolds, to appear as an Annals of Math.Study, Princeton University Press.Google Scholar
  13. [MTW]
    I. Madsen, C.B. Thomas and C.T.C. Wall, The topological spherical space form problem II. Existence of free actions, Topology 15 (1976), 375–382.MathSciNetzbMATHGoogle Scholar
  14. [MMo]
    J.M. Masley and H.L. Montgomery, Cyclotomic fields with unique factorization, J.Reine Angew.Math. 286/287 (1976), 248–256.MathSciNetzbMATHGoogle Scholar
  15. [Mg]
    R.J.Milgram, Evaluating the Swan finiteness obstruction for periodic groups, these proceedings.Google Scholar
  16. [Mn]
    J. Milnor, Whitehead torsion, Bull.Amer.Math.Soc. 72 (1966), 358–426.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Sch]
    I. Schur, Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J.Reine Angew. Math. 132 (1907), 85–137.MathSciNetzbMATHGoogle Scholar
  18. [S]
    E. Stein, Surgery on products with finite fundamental group, Topology 16 (1977), 473–493.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [W]
    C.T.C. Wall, Surgery on Compact Manifolds, Academic Press, London & New York 1970.zbMATHGoogle Scholar
  20. [W1]
    C.T.C. Wall, Formulae for surgery obstructions, Topology 15 (1976), 189–210 Corrigendum, Topology 16 (1977), 495–496.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [W2]
    C.T.C. Wall, Foundations of algebraic L-theory, pp.266–300 in Algebraic K-theory III, Lecture Notes in Mathematics 343, Springer-Verlag, Berlin Heidelberg New York 1973.Google Scholar
  22. [W3]
    C.T.C. Wall, On the classification of Hermitian forms. III Complete semilocal rings, Invent.Math. 19 (1973), 59–71.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [W4]
    C.T.C. Wall, On the classification of Hermitian forms. IV Adele rings, Invent.Math. 23 (1974), 241–260.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [W5]
    C.T.C. Wall, Classification of Hermitian forms. VI Group rings, Ann. of Math. 103 (1976), 1–80.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [W6]
    C.T.C. Wall, Free actions of finite groups on spheres, pp.115–125 in Proceedings of Symposia in pure Mathematics 32, AMS 1978.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Erkki Laitinen
    • 1
  • Ib Madsen
    • 2
  1. 1.Department of MathematicsUniversity of HelsinkiHelsinki 10Finland
  2. 2.Matematisk InstitutAarhus UniversitetAarhus CDenmark

Personalised recommendations