Algebraic K-theory and flat manifolds

  • Jean-Claude Hausmann
Algebraic K- And L-Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 763)


Vector Bundle Tangent Bundle Euler Characteristic Euler Class Obstruction Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bo 1]
    A. BOREL Topics in the homotopy thepry of fibre bundles, Springer Lect. Notes 36 (1967).Google Scholar
  2. [Bo 2]
    — Stable real cohomology of arithmetic groups, Ann. Ec. Norm. Sup. 4e série, t.7 (1974), p. 235–272.MathSciNetzbMATHGoogle Scholar
  3. [Br]
    W. BROWDER Surgery on simply connected manifolds, Springer-Verlag 1972.Google Scholar
  4. [Ha]
    J.-Cl. HAUSMANN-Manifolds with a given homology and fundamental group Comm. Math. Helv. 53 (1978) p. 113–134.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [H-H]
    J.-Cl. HAUSMANN-D. HUSEMOLLER-Acyclic maps. L'Enseign.Math., to appear.Google Scholar
  6. [H-V 1]
    J.-Cl. HAUSMANN-P. VOGEL-The plus construction and lifting maps from manifolds. Proceedings of Symposia in Pure Math. 32 (1977) p. 417–426.Google Scholar
  7. [H-V 2]
    — Reduction of structure on manifolds by semi-s-cobordism. Monographie de l'Enseign. Math. dedicated to B. Eckmann, p. 117–124.Google Scholar
  8. [Hr]
    D. HUSEMOLLER-Fibre bundles. 2e édition Springer-Verlag 1975.Google Scholar
  9. [Ka]
    M. KAROUBI K-theory, an Introduction. Springer-Verlag 1978.Google Scholar
  10. (vdK]
    W. van der KALLEN-Injective stability for K2. Algebraic K-theory, Evanston 1976, Springer Lect. Notes Nb 551.Google Scholar
  11. [vdK-S]
    W. van der KALLEN-M. STEIN-On the Schur multipliers of Steinberg and Chevalley Groups. Math. Zeitsch. 155 (1977) 83–94.CrossRefzbMATHGoogle Scholar
  12. [Ke]
    M. KERVAIRE: Multiplicateurs de Schur et K-théorie. Essays on Topology and related Topics, Sringer-Verlag 1970, p. 212–225.Google Scholar
  13. [Mi 1]
    J. MILNOR: On the existence of a connection with curvature zero. Comm. Math. Helv. 32 (1958) p. 215–223.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Mi 2]
    ____ Introduction to algebraic K-theory, Princeton Univ. Press 1971.Google Scholar
  15. [Q]
    D. QUILLEN: Higher Algebraic K-theory. Proc. INt. Congress of Math. Vancouver 1974, 171–176.Google Scholar
  16. [R-S]
    U. REHMANN-Ch. SOULE: Finitely presented groups of matrices. Algebraic K-theory, Evanston 1976, Springer Lect. Notes, p. 551.Google Scholar
  17. [Sm]
    J. SMILLIE: Flat manifolds with non-zero Euler characteristics Comm. Math. Helv. 52 (1977) 453–455.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Su]
    D. SULLIVAN: La classe d'Euler réelle d'un fibré à groupe structural SLn(Z) est nulle. Comptes rendus Ac. Sc. Paris, Série A, t. 281 (1975) p. 17–18.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Jean-Claude Hausmann
    • 1
    • 2
  1. 1.University of GenevaSwitzerland
  2. 2.The Institute for Advanced StudyPrinceton

Personalised recommendations