Advertisement

Homotopy rigidity of sturdy spaces

  • Arunas Liulevicius
Characteristic Classes And Bordism
Part of the Lecture Notes in Mathematics book series (LNM, volume 763)

Keywords

Homogeneous Space Weyl Group Maximal Torus Linear Action Linear Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.F.Atiyah and G.B.Segal, Lectures on equivariant K-theory, Mimeographed notes, Oxford, 1965.Google Scholar
  2. 2.
    A.Back, Homotopy rigidity for Grassmannians (to appear). Preprint, University of Chicago, 1978.Google Scholar
  3. 3.
    A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogenes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115–207.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    G. Bredon, Introduction to compact transformation groups, Academic Press, London and New York, 1972.zbMATHGoogle Scholar
  5. 5.
    J.Ewing and A.Liulevicius, Homotopy rigidity of linear actions on friendly homogeneous spaces (to appear).Google Scholar
  6. 6.
    A. Liulevicius, Homotopy rigidity of linear actions: characters tell all, Bull. Amer. Math. Soc. 84 (1978), 213–221.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    _____, Linear actions on friendly spaces, Proceedings of the Waterloo Algebraic Topology Conference, June 1978 (to appear).Google Scholar
  8. 8.
    J.McLeod, The Künneth formula in equivariant K-theory, Proceedings of the Waterloo Algebraic Topology Conference, June 1978 (to appear).Google Scholar
  9. 9.
    A. Meyerhoff and T. Petrie, Quasi-equivalences of G-modules, Topology 15 (1976), 69–75.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    J.D. Monk, The geometry of flag manifolds, Proceedings London Math. Soc. (3) 9 (1959), 253–286.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    H.V. Pittie, Homogeneous vector bundles on homogeneous spaces, Topology 11 (1972), 199–203.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    G.B.Segal, Equivariant K-theory, Inst. Hautes Etudes Sci. Publ. Math. No. 34 (1968), 129–151.Google Scholar
  13. 13.
    _____, Cohomology of topological groups, Symposia Mathematica, vol. IV (INDAM, Rome, 1968/69), 377–387.Google Scholar
  14. 14.
    R. Steinberg, On a theorem of Pittie, Topology 14 (1975), 173–177.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Arunas Liulevicius
    • 1
  1. 1.The University of ChicagoChicago

Personalised recommendations