Isotopy classification of spheres in a manifold

  • Lawrence L. Larmore
Characteristic Classes And Bordism
Part of the Lecture Notes in Mathematics book series (LNM, volume 763)


Line Bundle Spectral Sequence Natural Kind Double Point Isotopy Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. G. Barratt and M. E. Mahowald, The Metastable Homotopy of O(n). Bull. AMS 70 (1964), 758–760 MR 31 # 6229.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. P. Dax, Etude Homotopique des Espaces de Plongements, Ann. Sci. École Norm. Sup. (4) 5 (1972), 303–377 MR 47 # 9643.MathSciNetzbMATHGoogle Scholar
  3. 3.
    A. Haefliger, Plongements Différentiables dans le Domaine Stable, Comment. Math. Helv. 37 (1961), 57–70 MR 28 # 625.MathSciNetzbMATHGoogle Scholar
  4. 4.
    L. L. Larmore, Obstructions to Embedding and Isotopy in the Metastable Range, Rocky Mt. J. Math. 3 (1973), 355–375 MR 50 # 8559.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    L. L. Larmore, Isotopy Groups, Trans. AMS 239 (1978), 67–97.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    H. A. Salomonsen, On the Existence and Classification of Differential Embeddings in the Metastable Range, unpublished preprint.Google Scholar
  7. 7.
    Toda, H., Composition Methods in Homotopy Groups of Spheres. Princeton University Press, 1962 MR 26 # 777.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Lawrence L. Larmore

There are no affiliations available

Personalised recommendations